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a b s t r a c t

In this paper, quasi-Monte Carlo combined with multiple linear regression (QMC-MLR) is proposed to
solve probabilistic load flow (PLF) calculation. A distinguishing feature of the paper is that PLF is
approached by a low-dimensional problem with the concept of the effective dimension, and thus QMC
based on low-discrepancy sequences is used to improve the sampling efficiency of the Monte Carlo sim-
ulation (MCS). Moreover, according to the relationship between linear correlation and linear regression,
the MLR-based correlation control technique is developed to arrange the orders of samples in order to
introduce prescribed dependences between variables. The proposed method is tested with the IEEE
118-bus system. Simulation results indicate that the MLR-based technique is robust and efficient in han-
dling correlated non-normal variables and the proposed method shows better performances in PLF cal-
culation compared with other MCS techniques, including simple random sampling (SRS), Latin
hypercube sampling (LHS) and Latin supercube sampling (LSS).

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Following the increased use of renewable energies, the uncer-
tainties linked to their resources have had an increasing impact
on the operation of power systems. Deterministic methods cannot
fully depict the characteristics of systems and stochastic
approaches are now attracting more attention. Probabilistic load
flow (PLF) is an efficient stochastic tool to analyze the steady state
of power systems considering various random variables [1–6].

Monte Carlo simulation (MCS) is an important approach to
solve PLF, and simple random sampling (SRS) is usually used to
check the accuracy of other methods. However, SRS requires large
samples in order to obtain satisfactory results, thus various meth-
ods are proposed to improve the efficiency of MCS. Typical tech-
niques include antithetic variables, control variables, conditional
Monte Carlo, importance sampling (IS), stratified sampling, quasi-
Monte Carlo (QMC) and so on [7].

IS is useful in the estimation of rare-event probabilities [8], and
the cross-entry method, a classic IS technique, has been applied in
reliability evaluation [9]. IS can accurately capture the means of
system states but it is limited in analyzing probability distributions
of output variables. Latin hypercube sampling (LHS) is a stratified
sampling method and has been widely used in PLF. LHS consists
of sampling and permutation [10]. Random permutation (RP), the
basic permutation technique, may introduce undesired correla-
tions between samples of independent variables. Hence Cholesky
decomposition (CD) is adopted in [4] to diminish the spurious
dependences and the resulting LHS-CD obtains more accurate
results than LHS-RP under the same sample sizes. QMC, which is
based on low-discrepancy sequences, yields a faster convergence
rate than MCS using random sequences and has already been used
in some stochastic problems such as probabilistic small signal
stability analysis [11]. But its advantage degenerates for high
dimensions and thus few researches discuss its performance in
PLF. Recently, Latin supercube sampling (LSS), which combines
QMCwith LHS, has been used to solve PLF and shows better perfor-
mances than SRS and LHS [12].

Besides the sampling strategy, introducing desired correlations
between dependent variables is also important. Non-normally dis-
tributed variables are frequently used for the detailed modelling of
uncertainties in power systems. However, inducing correlations
between non-normal variables is more difficult and the most
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popular method is the Normal to Anything (NORTA) model [13,14].
SRS-NORTA is used in [15] to analyze the impact of wind produc-
tion on locational marginal prices. LHS-NORTA is developed in
[16] to tackle PLF with dependent input variables. The main short-
coming of NORTA is that it becomes infeasible with the increase of
correlation matrix dimensions [17].

Another important type of correlation control method is the
intelligent optimization algorithm. In [18], a population-based
algorithm, genetic algorithm (GA), is designed to control correla-
tions by treating the arrangement of samples as a combinatorial
optimization problem. In [19], a simulated annealing (SA)
approach is proposed to introduce correlations between variables
by exchanging the position of samples. Intelligent optimization
algorithms can be robust and efficient for correlation control in
small-sample MCS but suffer from a much heavier computational
burden in large-scale problems. In addition, other approaches such
as polynomial normal transformation [20] and unscented transfor-
mation [21] have also been developed to handle correlated vari-
ables in PLF.

In this paper, MCS is improved in two aspects, including the
sampling strategy and the correlation control. Firstly, the analysis
of variation (ANOVA) decomposition and the concept of the effec-
tive dimension are described. Then the method to calculate the
effective dimension of PLF is designed. Based on the consideration
that PLF is a low-dimensional problem, Sobol sequences, which
have a good uniformity in low-dimensional projections, are
employed to obtain samples of variables. Moreover, according to
the relationship between correlation and regression, an MLR-
based technique is designed to introduce prescribed dependences
among variables. Finally, the proposed PLF calculation method is
tested with the IEEE 118-bus system. Simulation results indicate
that this new method is more accurate and efficient than popular
MCS methods.

The rest of the paper is organized as follows. In Section 2 the
theoretical analysis of QMC for solving PLF is given. Section 3 gives
the relationship between linear correlation and linear regression
and describes the design of the technique to control correlations
between variables. The proposed PLF calculation method is given
in Section 4, followed by the case studies in Section 5. Finally,
the conclusion is presented in Section 6.

2. Quasi-Monte Carlo and probabilistic load flow

In this section the theoretical basis of using QMC in PLF calcula-
tion is given. Firstly, the deficiency of QMC in solving high-
dimensional problems is described. Then, the ANOVA decomposi-
tion and the concept of the effective dimension are introduced. If
the effective dimension is low, QMC can be efficient in handling
the high-dimensional problem. Finally, the procedure of calculat-
ing the effective dimension of PLF is designed.

2.1. Introduction of quasi-Monte Carlo

MCS can be used to solve the following integration

Q ¼
Z
Cs
f ðxÞdx ð1Þ

where f is an integrable function and Cs is the unit cube in s dimen-
sions. Then the MCS estimation of (1) is

Qn ¼ 1
n

Xn
i¼1

f ðxfigÞ ð2Þ

where x{i} are n independent and identically distributed random
points drawn from the s-dimensional problem. The estimated error
of (2) is given as follows [22]:

jQ � Qnj 6 Vðf ÞD�
n ð3Þ

where V(f) is the variation of f in the sense of Hardy and Krause, and
Dn

⁄ is the discrepancy which reflects the geometric nonuniformity
of points in the set.

According to (3), the error of MCS estimation is bounded and
dominated by Dn

⁄ since V(f) is a constant as long as the function f
is given. For random points uniformly distributed over Cs, it has
been shown that [23]

D�
n ¼ O ðlog lognÞ1=2n�1=2

� �
ð4Þ

The convergence rate, O(n�1/2), is independent of the dimension
of problems, which shows that MCS based on random points is
very robust but not efficient. Instead of random points, determin-
istic low-discrepancy sequences (LDSs) are used in QMC and the
discrepancy of LDSs is [24]

D�
n ¼ O ðlognÞsn�1� � ð5Þ
We see from the comparison of (4) and (5) that the convergence

rate of QMC is much faster thanMCS in low-dimensional problems.
But the O((log n)s n�1) error bound of QMC may not present any
improvement over the O(n�1/2) error bound of MCS in high dimen-
sions and it should take very large samples before the O(n�1) con-
vergence rate can manifest [25].

Although the convergence rate decreases with higher dimen-
sions, QMC has been seen to outperform MCS in some problems
with large dimensions and moderate sample sizes. In [11], the
probabilistic small signal stability is studied by a QMC-based tech-
nique, and the New England ten-generator 39-bus system is ana-
lyzed in the case study. There are 55 input variables and QMC
obtains relatively accurate results with hundreds of samples. In
[20], QMC is used to solve probabilistic optimal power flow. More
than 100 input random variables are considered in the test system,
and QMC gives better performances compared with SRS for 2000
samples. In [27], researchers at IBM studied the pricing of a five-
year discount bond, comprising a 1439-dimensional statistical
integral. They observed a QMC speedup of about 150 for an accu-
racy level of one basis point (i.e., a relative accuracy of 10�4) com-
pared with random Monte Carlo. Some of these successful
applications have been explained by the concept of the effective
dimension. In the following, this concept is reviewed since it lays
the foundation of using QMC in PLF.

2.2. ANOVA decomposition and effective dimension

The function f(x) defined in Cs can be represented in the follow-
ing form

f ðxÞ ¼ f 0 þ
Xs
k¼1

Xs
i1<���<ik

f i1 ���ik xi1 ; . . . ; xik
� � ð6Þ

where 1 6 i1 < � � � < ik 6 s. Eq. (6) means that

f ðxÞ ¼ f 0 þ
X
i

f i xið Þ þ
X
i<j

f ij xi; xj
� �þ � � � þ f 12���s x1; x2; . . . ; xsð Þ ð7Þ

The total number of the summands in (6) is 2s.
Eq. (6) is called the analysis of variation (ANOVA) decomposi-

tion of f(x) ifZ 1

0
f i1 ���ik xi1 ; . . . ; xik

� �
dxm ¼ 0 for m ¼ i1; . . . ; ik ð8Þ

It follows from (8) that the members in (6) are orthogonal and
can be expressed as integrals of f(x).

Assume that f(x) is square integrable. Then all the fi1� � �ik in (6)
are also square integrable. Squaring (6) and integrating over Cs

we get
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