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a b s t r a c t

The paper provides global optimization algorithms for two particularly difficult nonconvex problems
raised by hybrid system identification: switching linear regression and bounded-error estimation. While
most works focus on local optimization heuristics without global optimality guarantees or with guar-
antees valid only under restrictive conditions, the proposed approach always yields a solution with a
certificate of global optimality. This approach relies on a branch-and-bound strategy for which we devise
lower bounds that can be efficiently computed. In order to obtain scalable algorithms with respect to
the number of data, we directly optimize the model parameters in a continuous optimization setting
without involving integer variables. Numerical experiments show that the proposed algorithms offer
a higher accuracy than convex relaxations with a reasonable computational burden for hybrid system
identification. In addition, we discuss how bounded-error estimation is related to robust estimation in the
presence of outliers and exact recovery under sparse noise, for whichwe also obtain promising numerical
results.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The paper tackles two problems that lie at the core of hybrid
dynamical system identification, whose aim is to estimate, from
input–output data, a model of a system switching at unknown in-
stants between a number of linear subsystems. More precisely, we
consider the minimization of the error of a switching linear model
with a fixed number of modes and the iterative maximization of
the number of data that can be approximated by a linear model
with a bounded error. The latter problem, also known as bounded-
error estimation, has an interest outside of hybrid systems as well
and in particular for robust estimation in the presence of outliers.

The problems are understood as global minimization/
maximization problems. However, due to their complexity, most
of the literature, as reviewed in Garulli, Paoletti, and Vicino (2012)
and Paoletti, Juloski, Ferrari-Trecate, and Vidal (2007), focuses
on local optimization or heuristic approaches: for switching re-
gression with a fixed number of modes in Juloski, Weiland, and
Heemels (2005), Lauer (2013), Lauer, Bloch, and Vidal (2011), Le,
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Lauer, and Bloch (2014), Pham Dinh, Le Thi, Le, and Lauer (2014),
Vidal, Soatto, Ma, and Sastry (2003) and for the bounded-error ap-
proach to switching regression in Bako (2011), Bemporad, Garulli,
Paoletti, and Vicino (2005), Diehm, Maier, Flad, and Hohmann
(2013) and Ozay, Sznaier, Lagoa, and Camps (2012). Some of these
methods can be proved to yield the global solution but only in
specific conditions, such as in the absence of noise for Vidal et al.
(2003) and under data-dependent conditions difficult to check in
practice for Bako (2011). Recent results showed that, though being
NP-hard in general, some hybrid system identification problems,
including theminimization of the error of a switching linearmodel,
have a complexity no more than polynomial in the number of data
for a fixed data dimension (Lauer, 2015, 2016). However, in prac-
tice, the complexity of the corresponding polynomial algorithms
remains too high except for small data sets in small dimensions.

Contribution. Global optimization of such difficult problems in
general is usually deemed impractical. Hence, we focus on in-
stances where the data can be numerous but should live in a
low-dimensional space, as is often the case in a system identifi-
cation context (most examples in the literature on hybrid system
identification have a dimension less than five). In this context,
the paper proposes a branch-and-bound approach to the two
problems above. Contrary to previous works, such an approach
offers unconditional global optimality guarantees,while remaining
computationally efficient with large data sets. Branch-and-bound
is a standard approach to global optimization, but it was only
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considered for hybrid system identification in Roll, Bemporad,
and Ljung (2004), where an off-the-shelf solver is applied after a
reformulation of the piecewise affine regression problem into a
mixed-integer linear or quadratic program, with a number of bi-
nary variables proportional to the number of data. At the opposite,
the proposed approach can handle larger data sets by developing
dedicated optimization algorithms while focusing on the contin-
uous variables of the problems, i.e., the model parameters, rather
than the integer variables. Technically, the branch-and-bound ap-
proach relies on the derivation of a number of lower bounds on the
different cost functions for parameters constrained to lie in a box
(a hyperrectangle). In particular, efficiency is obtained thanks to
two ingredients: (i) simple lower bounds that can quickly discard
boxes with very large costs, and (ii) a constant-classification based
criterion that allows us to more tightly lower bound the cost.

Paper organization. Section 2 describes the general branch-and-
bound approach adopted to tackle the problems of interest, which
are formally described in dedicated sections: Section 3 for switch-
ing regression and Section 4 for the bounded-error approach. Then,
Section 5 presents numerical results and Section 6 discusses open
issues.

Notation. Vectors are written in lowercase bold letters, while ma-
trices are written in uppercase bold letters. For a vector u, the
kth entry is denoted by uk, while for a vector uj, its kth entry
is uj,k. All inequalities between vectors, e.g., u ≤ v, are meant
entrywise. A box B ⊂ RD is a hyperrectangular region of RD,
i.e., B = [u, v] =

∏D
k=1[uk, vk] with u ∈ RD, v ∈ RD such that

u ≤ v. The positive and negative parts of a scalar are denoted
by (·)+ = max{0, ·} and (·)− = min{0, ·} and similar notations
are used for the corresponding entrywise operations on vectors. Of
course, (·)2

+
and (·)2

−
are understood as the squared positive and

negative parts of a scalar, i.e., (·)2
+
= ((·)+)2 and (·)2

−
= ((·)−)2. The

notation |·| denotes either the absolute value for real arguments or
the cardinality for sets. The indicator function 1A evaluates to 1 if
the Boolean expression A is true and 0 otherwise.

2. General approach

Consider the global minimization of some cost function J(w) of
a vector of parameters w ∈ RD over a box Binit = [uinit, vinit] ⊂
RD, where the different definitions of the cost function J for the
problems of interest will be given in dedicated sections below.
We attack these problems with a branch-and-bound approach,
summarized in Algorithm 1, which takes a data set of regression
vectors xi ∈ Rd and target outputs yi ∈ R as inputs. In hybrid
system identification, the regression vectors are typically built
from lagged inputs and outputs of the system (Paoletti et al., 2007).

The general branch-and-bound scheme relies on computing
upper and lower bounds (J and J in Algorithm 1) on the global
optimum minw∈Binit J(w). Then, regions B of the search space in
which the local lower bound J(B) is larger than the global upper
bound J can be discarded, reducing the volume left to explore until
the relative optimality gap, (J − J)/J , decreases below a predefined
tolerance TOL. Here, the considered regions are always boxes,
i.e., hyperrectangles. Upper bounds J(B) can be easily computed
by some local optimization or heuristic method for a problem of
interest. Alternatively, J(B) can be computed merely as the cost
function value at the box base point u or at a random point inside
the box, while local optimization is only used periodically. On the
other hand, lower bounds J(B) require a careful derivation, the
efficiency of the approach relying mostly on the tightness of these
bounds.

Algorithm 1 retains only the solution yielding the best upper
bound J = J(w∗). Depending on the value of TOL, the algorithm can
terminatewhile there aremultiple remaining active boxes possibly

Algorithm 1 General branch-and-bound scheme.
Require: A data set {(xi, yi)}Ni=1 ⊂ Rd

× R, initial box bounds
Binit = [uinit, vinit] ⊂ RD and TOL > 0. Optionally, an initial guess
of w ∈ Binit.
Initialize the global bounds J ← 0, J ← +∞ or J ← J(w) if w is
provided, and the list of boxes B← {Binit}.
while (J − J)/J > TOL do

Split the current box B into B1 and B2 such that B = B1
∪ B2.

Compute upper bounds J(B1) and J(B2).
Update J ← min{J, J(B1), J(B2)} and the best solution w∗.
Compute lower bounds J(B1) and J(B2).
For k = 1, 2, append Bk to the list of active boxes B if J(Bk) ≤ J .
Remove B from the list of active boxes: B← B \ {B}.
Select the next box B← argminB∈B J(B) and set J ← J(B).

end while
return w∗ and J = J(w∗) ≈ minw∈Binit J(w).

containing equally good solutions within the tolerance. A possible
modification would be to retain a list of solution candidates with
cost function values close to the best one rather than a single
solution. Since such a modification would be straightforward, in
the following, we focus only on the version returning a single
solution.

3. Switching linear regression

We consider the identification of a switching system with n
modes generating a data set of N points (xi, yi) ∈ Rd

× R, i =
1, . . . ,N , with

yi = wT
qixi + ξi, (1)

where qi ∈ Q = {1, . . . , n} is the index of the active mode for the
ith point, {wj}

n
j=1 ⊂ Rd is a collection of linear model parameter

vectors and ξi ∈ R is a noise term. The aim here is to estimate,
from the knowledge of {(xi, yi)}Ni=1 and n only, the concatenated
parameter vector w = [wT

1 , . . . ,wT
n ]

T
∈ Rnd. Throughout the

paper, we assume a similar partitioning of all vectors from Rnd,
i.e., for u ∈ Rnd, uj refers to the jth subvector of dimension d in
u.

Least squares estimates1 ofw and q = [q1, . . . , qN ]T are defined
as the global solutions to

min
w∈Rnd,q∈QN

JSWq(w, q), (2)

with JSWq(w, q) =
N∑
i=1

(yi −wT
qixi)

2.

Note that Problem (2) involves N integer variables in q, which
would imply aworst-case exponential complexity in the number of
data for its direct global optimization. Other reformulations based
on nN binary variables suffer from a similar limitation, which is
why the following considers a continuous optimization point of
view.

Using the classification rule2

qi(w) = argmin
j∈Q

(yi −wT
j xi)

2, i = 1, . . .,N, (3)

1 We restrict the presentation to the squared loss function ℓ(e) = e2 , but similar
results could be obtained for instance with the absolute loss ℓ(e) = |e|.
2 When theminimum is not unique in (3), ties are arbitrarily broken by returning

the minimal index j of the minimum.
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