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a b s t r a c t

Penalized regression estimators are popular tools for the analysis of sparse and high-
dimensional models. However, penalized regression estimators defined using an un-
bounded loss function can be very sensitive to the presence of outlying observations,
especially to high leverage outliers. The robust and asymptotic properties of ℓ1-penalized
MM-estimators and MM-estimators with an adaptive ℓ1 penalty are studied. For the case
of a fixed number of covariates, the asymptotic distribution of the estimators is derived and
it is proven that for the case of an adaptive ℓ1 penalty, the resulting estimator can have the
oracle property. The advantages of the proposed estimators are demonstrated through an
extensive simulation study and the analysis of real data sets. The proofs of the theoretical
results are available in the Supplementary material to this article (see Appendix A).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

In this paper, we consider the problem of robust and sparse estimation for linear regression models. In modern 2

regression analysis, sparse and high-dimensional estimation scenarios where the ratio of the number of predictor variables 3

to the number of observations, say p/n, is high, but the number of actually relevant predictor variables to the number of 4

observations, say s/n, is low, have become increasingly common in areas such as bioinformatics and chemometrics. Outlier 5

identification and robustness issues are difficult even when p is of moderate size. Traditional robust regression estimators 6

do not produce sparse models and can have a bad behaviour with regard to robustness and efficiency when p/n is high, 7

see Maronna and Yohai (2015) and Smucler and Yohai (2015). Moreover, they cannot be calculated for p > n. Thus, robust 8

regression methods for high-dimensional data are in need. 9

Modern approaches to estimation in sparse and high-dimensional linear regression models include penalized least 10

squares (LS) estimators, e.g. the LS-Bridge estimator of Frank and Friedman (1993) and the LS-SCAD estimator of Fan and 11

Li (2001). LS-Bridge estimators are penalized least squares estimators in which the penalization function is proportional 12

to the qth power of the ℓq norm with q > 0. They include as special cases the LS-Lasso of Tibshirani (1996) (q = 1) and 13

the LS-Ridge of Hoerl and Kennard (1970) (q = 2). The LS-SCAD estimator is a penalized least squares estimator in which 14

the penalization function, the smoothly clipped absolute deviation (SCAD), is a function with several interesting theoretical 15

properties. 16

The theoretical properties of penalized least squares estimators have been extensively studied in the past years. Of special 17

note is the so called oracle property defined in Fan and Li (2001): An estimator is said to have the oracle property if the 18

estimated coefficients corresponding to zero coefficients of the true regression parameters are set to zero with probability 19

tending to one, while at the same time the coefficients corresponding to non-zero coefficients of the true regression 20

parameter are estimated with the same asymptotic efficiency we would have if we knew the correct model in advance. 21
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Knight and Fu (2000) derive the asymptotic distribution of LS-Bridge estimators in the classical regression scenario of1

fixed p. The LS-Lasso estimator is not variable selection consistent unless rather stringent conditions are imposed on the2

design matrix, and thus in general does not possess the oracle property; see Zou (2006) and Bühlmann and van de Geer3

(2011) for details. Moreover, the LS-Lasso estimator has a bias problem: it can excessively shrink large coefficients. To4

remedy this issue, Zou (2006) introduced the adaptive LS-Lasso, in which adaptive weights are used for penalizing different5

coefficients and showed that the adaptive Lasso can have the oracle property. As Zou (2006) points out, adaptive LS-Lasso6

estimators can be computed using any of the algorithms available to compute LS-Lasso estimators.7

Penalized least squares estimators are not robust and may be highly inefficient under heavy tailed errors. In an attempt8

to remedy this issue, penalized M-estimators defined using a convex loss function have been proposed. For example, in9

Wang et al. (2007) the authors propose to take the absolute value loss and a Lasso type penalty, they call the resulting10

estimator LAD-Lasso. See also Li et al. (2011) and Lambert-Lacroix and Zwald (2011). Estimators based on ranks have also11

been proposed, see for example Johnson and Peng (2008) and Leng (2010). Zou and Yuan (2008) proposed the adaptive12

Lasso Penalized Composite Quantile Regression estimator. All of the aforementioned estimators aim at robustness towards13

outliers in the response variable and/orwhenheavy-tailed errors are present. Unfortunately, they are not robustwith respect14

to contamination in the predictor variables.15

Khan et al. (2007) proposed a robust version of the LARS procedure, see Efron et al. (2004), and called it RLARS. However,16

since the RLARS procedure is not based on the minimization of a clearly defined objective function, a theoretical analysis17

of its properties is difficult. In Wang and Li (2009) the authors proposed a weighted Wilcoxon-type smoothly clipped18

absolute deviation (WW-SCAD) estimator. Maronna (2011) introduced S-Ridge and MM-Ridge estimators: ℓ2-penalized19

S- and MM-estimators. However, ℓ2-penalized regression estimators do not produce sparse models. Alfons et al. (2013)20

proposed the Sparse-LTS estimator, a least trimmed squares estimator with an ℓ1 penalization. See also Öllerer et al. (2016),21

Alfons et al. (2016) and Öllerer et al. (2015). Wang et al. (2013) proposed a penalized regression estimator based on an22

exponential squared loss function (ESL-Lasso). Gijbels and Vrinssen (2015) proposed nonnegative garrote versions of several23

robust regression estimators, including MM and S-estimators. In Loh (2015), the author studied the theoretical properties24

of penalized regression M-estimators in the p ≫ n regime. Unfortunately, these results are not directly applicable to the25

estimators we study in this paper.26

In this paper, we study the robust and asymptotic properties of MM-Lasso and adaptive MM-Lasso estimators: ℓ1-27

penalized MM-estimators and MM-estimators with an adaptive ℓ1 penalty. We obtain lower bounds on their breakdown28

points. We derive the asymptotic distribution of the estimators and prove that adaptive MM-Lasso estimators can have the29

oracle property. Even thoughwe derive our asymptotic results for fixed p, MM-Lasso and adaptiveMM-Lasso estimators can30

be computed for p > n. In extensive simulations, we compare the performance of the MM-Lasso and adaptive MM-Lasso31

estimators with that of several competitors. In all the scenarios considered our proposed estimators compare favourably to32

the competitors. Finally, we apply our proposed estimators to two real data sets.33

The rest of this paper is organized as follows. In Section 2 we review the definition and some of the most important34

properties of MM and S-estimators. In Section 3 we define MM-Lasso and adaptive MM-Lasso estimators, we study their35

robust and asymptotic theoretical properties and we describe an algorithm to compute them. In Section 4 we conduct an36

extensive simulation. In Section 5 we apply the aforementioned estimators to two real data sets. Conclusions are provided37

in Section 6. Finally, the proofs of all our results are given in the Supplementary material to this article (see Appendix A).38

2. MM and S-estimators39

We consider a linear regression model with random carriers: we observe (xTi , yi) i = 1, . . . , n, i.i.d. (p + 1)-dimensional40

vectors, where yi is the response variable and xi ∈ Rp is a vector of random carriers, satisfying41

yi = xTi β0 + ui for i = 1, . . . , n, (1)42

where β0 ∈ Rp is to be estimated and ui is independent of xi. For β ∈ Rp let r(β) = (r1(β), . . . , rn(β)), where43

ri(β) = yi − xTi β. Some of the coefficients of β0 may be zero, and thus the corresponding carriers do not provide relevant44

information to predict y. We do not know in advance the set of indices corresponding to coefficients that are zero, and it45

may be of interest to estimate it. For simplicity, we will assume β0 = (β0,I ,β0,II), where β0,I ∈ Rs, β0,II ∈ Rp−s, all the46

coordinates of β0,I ∈ Rs are non-zero and all the coordinates of β0,II ∈ Rp−s are zero.47

Let F0 be the distribution of the errors ui, G0 the distribution of the carriers xi and H0 the distribution of (xTi , yi). Then H048

satisfies49

H0(x, y) = G0(x)F0(y − xTβ0). (2)50

Let xI stand for the first s coordinates of x and let G0,I be its distribution. For b ∈ Rp and q > 0 we note51

∥b∥q =


p

j=1

|bj|q
1/q

52

and ∥b∥ = ∥b∥2. Throughout this paper, a ρ-function will refer to a bounded ρ-function, in the sense of Maronna et al.53

(2006). That is, we will say that ρ is a ρ-function if: (i) ρ is even, continuous and bounded, (ii) ρ(x) is a nondecreasing54
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