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A B S T R A C T

An improved rate equation was proposed to investigate nonisothermal crystallization kinetics. The reaction
model, activation energy and pre-exponential factor were determined by using the multivariate linear regression
method. A particular form of the effective activation energy was derived from the improved rate equation, and
experimental data reported in previous studies were used to validate the reliability of the proposed rate equa-
tion. Results indicate that the values of effective activation energy obtained from the improved rate equation are
similar to those obtained from the isoconversional method. When the improved rate equation is used to fit the
crystallization rates under different cooling or heating rates simultaneously, the correlation coefficient is be-
tween 0.982 and 0.998, which indicates that the proposed rate equation is capable of describing the variation of
the crystallization rates during nonisothermal processes.

1. Introduction

Crystallization is a process that involves two steps known as nu-
cleation and growth. The rates of the two steps could be studied by
crystallization kinetics. The majority of kinetic methods used in thermal
analysis consider the rate to be a function of two variables [1]:

=dα
dt

k T f α( ) ( ) (1)

where α is the relative crystallinity, k (T) is the rate constant at tem-
perature T, and f (α) is a function of α. The rate constant is commonly
expressed as the Arrhenius equation:
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RT
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where A is the pre-exponential factor. Ea is the activation energy for
crystallization. R is the universal gas constant, and T is absolute tem-
perature. By using the general Sestak-Berggren model [2], Eq. (1) can
also be expressed as:

= − + + − + − −dα
dt

lnA Ea
RT

mlnα nln α pln ln αln (1 ) ( (1 ))
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where the kinetic parameters A, Ea, m, n, p can be determined by using
the fitting method. The crystallization kinetics during nonisothermal
process could also be described by using single-step models, such as the
Avrami equation and the Ozawa method [3–5]. However, for different

kinetic models, the form of the rate equation is different. When the
relative crystallinity is described by the Avrami Equation, the crystal-
lization rate is expressed as a product of a function of relative crystal-
linity and a function of time:

= − − −dα
dt

n α ln α
t

(1 )( (1 )) 1
(4)

where n is the Avrami exponent which is dependent on the growth
geometry of the crystals and on the type of nucleation [3]. When the
Ozawa equation is used to determine the relative crystallinity, the
crystallization rate relates to three variables including the relative
crystallinity, the temperature and the cooling/heating rate [6,7]:

= − −dα
dt

α
dγ T

dT
β(1 )

( ) n1 0
(5)

where γ (T) is a cooling function and n0 is the Ozawa exponent asso-
ciated with nucleation and crystal growth mechanism. β is cooling rate
or heating rate during nonisothermal process. It is difficult to convert
Eq. (1) to Eq. (4) or Eq. (5). Therefore, the activation energy of non-
isothermal crystallization process could not be obtained from the Av-
rami equation or the Ozawa equation. Based on the assumption of a
first-order reaction, the Kissinger method is derived for determining the
activation energy [8]. It is noted that the activation energy obtained
from the Kissinger method is a constant value for any process, which
indicates that the activation energy can only represent single-step ki-
netics.
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Due to the non-Arrhenius character of many processes, the rate
equation expressed as Eq. (1) may not be appropriate for determining
the crystallization rate of nonisothermal processes. An effective im-
provement for the rate equation is to assume that the single-step Eq. (1)
is applicable only to a single extent of conversion [9]. In this case, at a
constant extent of conversion, the reaction rate is only a function of
temperature, which is known as the isoconversional principle [10].
Unlike the Kissinger method, the isoconversional method could be used
to describe the variation of the effective activation energy Eα during
nonisothermal process [11,12]. Because the isoconversional method is
capable of describing the kinetics of multi-step and non-Arrhenius
processes, the activation energy obtained from this method is more
reliable for estimating the activation energy than the Kissinger method
[13]. When the isoconversional method is used to determine the value
of Eα, the identification of reaction model is unnecessary [14], and a
particular form of Eα could not be obtained. However, by applying the
Hoffman-Lauritzen theory, the temperature dependence of the effective
activation energy could be investigated [12,13]. For nonisothermal
crystallization process, the temperature at a given α varies with cooling
rate. Thus, if the effective activation energy is considered as a function
of temperature, the value of the effective activation energy at a given α
is different under different cooling or heating rates. However, the value
of Eα obtained from the isoconversional method is a constant, which is
not consistent with the effective activation energy obtained from the
Hoffman-Lauritzen theory. Therefore, the temperature is not the only
factor that could influence the effective activation energy, and further
investigations are necessary to interpret the temperature dependence of
the effective activation energy.

In this paper, an improved rate equation is proposed to simulate the
variation of the crystallization rate during nonisothermal process, and
the multivariate linear regression method is used to obtain the kinetic
parameters, including the reaction model, the activation energy and the
pre-exponential factor. A particular form of the Eα is derived for
studying the temperature dependence of the effective activation energy.
Experimental data reported in previous studies are used to validate the
reliability of the proposed equation. Besides, the value of the effective
activation energy obtained from the improved rate equation is com-
pared with the result obtained from the isoconversional method.

2. Theoretical background

In this section, a rate equation used to determine the crystallization
rate of nonisothermal process is derived according to commonly used
kinetic models. In order to describe the crystallization rate with a
general equation, a two-variable function is constructed:

= ×h T t k T A t( , ) ( )( )q (6)

where k(T) is the rate constant. q is a constant. According to Eq. (4), the
crystallization rate derived from the Avrami equation could be con-
sidered as a product of a function of relative crystallinity and a function
of time. For the Ozawa equation, the crystallization rate could be
considered as a product of a function of relative crystallinity and a two-
variable function of temperature and cooling rate, as shown in Eq. (5).
For the isoconversional method used to calculate the effective activa-
tion energy, the crystallization rate for a whole process could be ex-
pressed as a product of a one-variable function of relative crystallinity
and a two-variable function of temperature and relative crystallinity.
Because the relative crystallinity could be considered as a two-variable
function of time and temperature, the rate equations derived from the
above three models could be expressed as an unified form:

=dα
dt

f α g T t h T t( ) ( , ) ( , )
(7)

where f(α) is a function of α. g(T,t) is a two-variable function of tem-
perature and time. The different forms of g(T,t) derived from the Av-
rami equation, the Ozawa model and the isoconversional method are

shown in Eqs. (8), (9) and (10), respectively.
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The two-variable function g(T,t) could be considered as a function of
relative crystallinity when Eq. (11) is satisfied.
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In Eq. (11), temperature Ti corresponds to time tj under a given
temperature program. For experimental data under different cooling or
heating rates, the temperature under a given α is different. If the values
of g(Ti,Tj) under these temperatures are the same, the value of g(Ti,Tj) is
unique under a given α. Thus, the two-variable function could be
considered as a function of α, and the crystallization rate can be re-
written as:

=dα
dt

F α k T U T( ) ( ) ( )
(12)

where F(α) is a function of relative crystallinity. According to the
general Sestak-Berggren model, the function F(α) is written as:

= = − − −F α f α g T t α α ln α( ) ( ) ( , ) (1 ) ( (1 ))m n p (13)

The U(t) is a function of time, as shown in Eq. (14).

=U t A t( ) q q (14)

By taking the natural logarithm of the crystallization rate, the
equation used for the multivariate linear regression method is expressed
as:

= + − + − − − +

+ +

ln dα
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The relative crystallinity α can be obtained according to the heat
flux measured by the Differential Scanning Calorimetry (DSC), as
shown in Eq. (16).
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The variables and parameters in Eq. (15) could be expressed as two
matrices, as shown in Eq. (17) and Eq. (18).
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The experimental data used for the fitting method are multiple data
sets obtained under different cooling or heating rates. Thus, by mini-
mizing the difference between the experimental data and calculated
results, the parameters m, n, p, q, Ea, A could be obtained from Eq. (19).
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