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subjects. The advantage of the proposed model is that under the proposed model, each
subject has both individual scalar covariate effects and individual functional effects over
time, while it shares the common population scalar covariate effects and the common
population slope functions. A smoothing spline method is proposed to estimate the

1};;/3[/ m(;ﬁsi'thm population fixed and random slope functions, and a REML-based EM algorithm is developed
Functional linear regression to estimate fixed effects and variance parameters for random effects. Simulation studies
Smoothing spline illustrate that for finite samples the proposed estimation method can provide accurate
Random effects model estimates for the functional linear mixed-effects model. The proposed model is applied to

investigate the effect of daily ozone concentration on annual nonaccidental mortality rates
and also to study the effect of daily temperature on annual precipitation.
Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

When a random variable is observed at multiple time points or spatial locations, the data can be viewed as a function
of time or spatial location. This type of data is generally called functional data (Ramsay and Silverman, 2005). Now in the
big data era, functional data analysis (FDA) has become very attractive in statistical methodology and applied data analysis.
Functional linear models (FLMs), introduced by Ramsay and Dalzell (1991), are some of the most popular models in FDA.
FLMs can be used to model the relationship between functional variables and to predict a scalar response from functional
covariates. Developments in modern technology have allowed FLMs to be applied to model functional data in many fields
such as economics, medicine, environment, and climate [see for instance, Ramsay and Silverman, 2002, 2005, and Ferraty
and Vieu, 2006, for several case studies].

The properties of FLMs have been thoroughly examined in the literature. For example, Yao et al. (2005) studied FLMs
for sparse longitudinal data and suggested a nonparametric estimation method based on functional principal components
analysis (FPCA). Their proposed functional regression approach is flexible enough to allow sparse measurements of
functional predictors and response. Cai and Hall (2006) discussed the prediction problem in FLMs based on the FPCA
technique. Crambes et al. (2009) proposed a smoothing spline estimator for the functional slope parameter, and extended
this estimator to covariates with measurement-errors. Yuan and Cai (2010) suggested a smoothness regularization method
for estimating FLMs based on the reproducing kernel Hilbert space (RKHS) approach. They provided a unified treatment
for both the prediction and estimation problems by developing a tool that relys on simultaneous diagonalization of two
positive-definite kernels. Wu et al. (2010) proposed a varying-coefficient FLM which allows for the slope to be modeled
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as a dependent function of additional scalar covariates. Gertheiss et al. (2013) extended the classical functional principal
components regression (FPCR) by developing a longitudinal FPCR that allows for different effects of subject-specific trends
in curves and for visit-specific deviations from that trend in longitudinal functional data. Scheipl et al. (2015) proposed a
flexible functional additive mixed model that incorporates linear and nonlinear effects of functional and scalar covariates
and allowed for flexible correlation structures of data. A systematic review on FLMs can be found in Morris (2015).

One conventional FLM involves linking a scalar response variable Y;, j = 1, ..., m, to a functional predictor X;(t) through
the following model:

Y=« +/,3(t)Xj(t)dt+€j, (M
S

where o is the intercept, B(t) is a smooth slope function, and the ¢;’s are independent and identically distributed (i.i.d.)
random variables with mean 0 and variance 03. In this model, S is often assumed to be a compact subset of an Euclidean
space such as [0, 1]. The slope function B(t) represents the accumulative effect of the functional covariate X;(t) on the scalar
response Y;.

For purposes of illustration, we take the air pollution data as an example. This data is from the R package NMMAPSdata
(Peng and Welty, 2004), which catalogues air pollution, weather, and mortality data for American cities from 1987 to 2000.
Our aim is to investigate the impact of daily ozone concentration on nonaccidental mortality rates. The scalar response Yj;
is the logarithm of annual nonaccidental mortality rates in the jth year at the ith city, and the functional predictor X;;(t)
is daily ozone concentration. In a preliminary analysis, we performed the classical FLM (1) on each individual city and
found that there was dramatic variation in the estimate /§ (t) among different cities. This indicates that the effect of daily
ozone concentration on the annual nonaccidental mortality rates is not the same in different cities. Therefore, it may not be
appropriate to pool the data for all US cities and provide a single estimate for the average effect of daily ozone on the annual
nonaccidental mortality rates. On the other hand, we may not fully exploit the information available in the data if we fit
separate functional linear models for each city.

To address this dilemma, we generalize the FLM (1) to allow for the incorporation of random effects in the slope function.
We call this new model the functional linear mixed-effects model (FLMM). Assume that we repeatedly observe a distinct
functional predictor and scalar outcome for each subject over several visits. Then the observed data has the structure
{Yy, Xii(t), Wy, Zy},i=1,...,n,j=1,..., m, where Yj; is the jth repeated measurement of the scalar response for the ith
subject, W;; and Z;; are vectors of scalar covariates, and X;;(t) = (Xjj1(t), Xj2(t), . . ., Xja(t)) are the corresponding functional
predictors. The functional linear mixed-effects model can be expressed as follows:

d
=W+ Zyi+ Y [190 + bRy 0t + 65 @
=1

where « is a p-dimensional vector of the fixed effect, p; is the g-dimensional vector of random effect of scalar covariates,
B(t) = (B1(t), ..., Ba(t)) represents the population effect of X;;(t) on Yy, bi(t) = (bi1(t), ..., bjg(t)) stands for the random
effect of X;;(t) on Y; for the ith subject, and €; is the i.i.d. random variable with mean 0 and variance 2. In this article, we
assume that y; ~ N(0, 62W), €5 ~ N(0, 62), and by (t) follows a Gaussian stochastic process with mean 0 and covariance
function y, (s, t), that is, by (t) ~ GP(0, y(s, t)). We also assume that y;, €, b;(t), and X;;(t) are mutually independent.

The functional linear mixed-effects model above is attractive, because it can estimate the population effect and random
effect of the functional predictor X(t) (e.g., the daily temperature and ozone concentrations) on the scalar response Y(e.g., the
annual nonaccidental deaths), as well as the population effect e and random effect y;. The application of the proposed
functional linear mixed-effects model to the air pollution problem is not unique; many similar applications can be found in
environmental and biological problems.

The proposed functional linear mixed-effect model (2) is different from the following functional mixed model (Goldsmith
etal.,, 2011, 2012):

Yy =Zb; + /mf)xij(t)dt + €, ?
S

where b; ~ N(0, a,fl) accounts for the correlation in the repeated outcomes for the ith subject. The primary distinction
between models (2) and (3) is that the subject-specific random effect b; in (3) remains constant across visits, while the
random effect b;(t) in (2) allows this effect to vary with time. By including the random effect b;(t) in (2), this model can
characterize trends in the effects of functional predictors on scalar outcomes for different subjects.

Many nonparametric smoothers used for FLMs can be applied to fit model (2). In this article, we employ the smoothing
spline method (Ramsay and Silverman, 2005) to estimate S8, (t) and bj;(t) in (2). Next, we transform model (2) into a linear
mixed-effects model (LMM). Finally, we propose an REML-based EM algorithm to fit the LMM, the efficiency of which is
illustrated by examples.

The remainder of this article is organized as follows. Section 2 introduces a smoothing spline method to estimate the
above functional linear mixed-effects model. Section 3 implements simulations to evaluate the finite sample performance
of the smoothing spline method. The functional linear mixed-effects model is demonstrated through two real applications
in Section 4. Conclusions are given in Section 5.



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/110522

