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a b s t r a c t

A new functional linear mixed model is proposed to investigate the impact of functional
predictors on a scalar response when repeated measurements are available on multiple
subjects. The advantage of the proposed model is that under the proposed model, each
subject has both individual scalar covariate effects and individual functional effects over
time, while it shares the common population scalar covariate effects and the common
population slope functions. A smoothing spline method is proposed to estimate the
population fixed and randomslope functions, and aREML-based EMalgorithm is developed
to estimate fixed effects and variance parameters for random effects. Simulation studies
illustrate that for finite samples the proposed estimation method can provide accurate
estimates for the functional linear mixed-effects model. The proposed model is applied to
investigate the effect of daily ozone concentration on annual nonaccidental mortality rates
and also to study the effect of daily temperature on annual precipitation.

Crown Copyright© 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

When a random variable is observed at multiple time points or spatial locations, the data can be viewed as a function
of time or spatial location. This type of data is generally called functional data (Ramsay and Silverman, 2005). Now in the
big data era, functional data analysis (FDA) has become very attractive in statistical methodology and applied data analysis.
Functional linear models (FLMs), introduced by Ramsay and Dalzell (1991), are some of the most popular models in FDA.
FLMs can be used to model the relationship between functional variables and to predict a scalar response from functional
covariates. Developments in modern technology have allowed FLMs to be applied to model functional data in many fields
such as economics, medicine, environment, and climate [see for instance, Ramsay and Silverman, 2002, 2005, and Ferraty
and Vieu, 2006, for several case studies].

The properties of FLMs have been thoroughly examined in the literature. For example, Yao et al. (2005) studied FLMs
for sparse longitudinal data and suggested a nonparametric estimation method based on functional principal components
analysis (FPCA). Their proposed functional regression approach is flexible enough to allow sparse measurements of
functional predictors and response. Cai and Hall (2006) discussed the prediction problem in FLMs based on the FPCA
technique. Crambes et al. (2009) proposed a smoothing spline estimator for the functional slope parameter, and extended
this estimator to covariates with measurement-errors. Yuan and Cai (2010) suggested a smoothness regularization method
for estimating FLMs based on the reproducing kernel Hilbert space (RKHS) approach. They provided a unified treatment
for both the prediction and estimation problems by developing a tool that relys on simultaneous diagonalization of two
positive-definite kernels. Wu et al. (2010) proposed a varying-coefficient FLM which allows for the slope to be modeled
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as a dependent function of additional scalar covariates. Gertheiss et al. (2013) extended the classical functional principal
components regression (FPCR) by developing a longitudinal FPCR that allows for different effects of subject-specific trends
in curves and for visit-specific deviations from that trend in longitudinal functional data. Scheipl et al. (2015) proposed a
flexible functional additive mixed model that incorporates linear and nonlinear effects of functional and scalar covariates
and allowed for flexible correlation structures of data. A systematic review on FLMs can be found in Morris (2015).

One conventional FLM involves linking a scalar response variable Yj, j = 1, . . . ,m, to a functional predictor Xj(t) through
the following model:

Yj = α +


S
β(t)Xj(t)dt + ϵj, (1)

where α is the intercept, β(t) is a smooth slope function, and the ϵj’s are independent and identically distributed (i.i.d.)
random variables with mean 0 and variance σ 2

ϵ . In this model, S is often assumed to be a compact subset of an Euclidean
space such as [0, 1]. The slope function β(t) represents the accumulative effect of the functional covariate Xj(t) on the scalar
response Yj.

For purposes of illustration, we take the air pollution data as an example. This data is from the R package NMMAPSdata
(Peng andWelty, 2004), which catalogues air pollution, weather, and mortality data for American cities from 1987 to 2000.
Our aim is to investigate the impact of daily ozone concentration on nonaccidental mortality rates. The scalar response Yij
is the logarithm of annual nonaccidental mortality rates in the jth year at the ith city, and the functional predictor Xij(t)
is daily ozone concentration. In a preliminary analysis, we performed the classical FLM (1) on each individual city and
found that there was dramatic variation in the estimate β̂(t) among different cities. This indicates that the effect of daily
ozone concentration on the annual nonaccidental mortality rates is not the same in different cities. Therefore, it may not be
appropriate to pool the data for all US cities and provide a single estimate for the average effect of daily ozone on the annual
nonaccidental mortality rates. On the other hand, we may not fully exploit the information available in the data if we fit
separate functional linear models for each city.

To address this dilemma, we generalize the FLM (1) to allow for the incorporation of random effects in the slope function.
We call this new model the functional linear mixed-effects model (FLMM). Assume that we repeatedly observe a distinct
functional predictor and scalar outcome for each subject over several visits. Then the observed data has the structure
{Yij,Xij(t),Wij, Zij}, i = 1, . . . , n, j = 1, . . . ,mi, where Yij is the jth repeated measurement of the scalar response for the ith
subject,Wij and Zij are vectors of scalar covariates, andXij(t) = (Xij1(t), Xij2(t), . . . , Xijd(t)) are the corresponding functional
predictors. The functional linear mixed-effects model can be expressed as follows:

Yij = W′

ijα+ Z′

ijγ i +

d
ℓ=1


S
[βℓ(t)+ biℓ(t)]Xijℓ(t)dt + ϵij, (2)

where α is a p-dimensional vector of the fixed effect, γ i is the q-dimensional vector of random effect of scalar covariates,
β(t) = (β1(t), . . . , βd(t))′ represents the population effect ofXij(t) on Yij,bi(t) = (bi1(t), . . . , bid(t))′ stands for the random
effect of Xij(t) on Yij for the ith subject, and ϵij is the i.i.d. random variable with mean 0 and variance σ 2

ϵ . In this article, we
assume that γ i ∼ N(0, σ 2

ϵ 9), ϵij ∼ N(0, σ 2
ϵ ), and biℓ(t) follows a Gaussian stochastic process with mean 0 and covariance

function γℓ(s, t), that is, biℓ(t) ∼ GP(0, γℓ(s, t)). We also assume that γ i, ϵij, bi(t), and Xij(t) are mutually independent.
The functional linear mixed-effects model above is attractive, because it can estimate the population effect and random

effect of the functional predictorX(t) (e.g., the daily temperature and ozone concentrations) on the scalar response Y (e.g., the
annual nonaccidental deaths), as well as the population effect α and random effect γ i. The application of the proposed
functional linear mixed-effects model to the air pollution problem is not unique; many similar applications can be found in
environmental and biological problems.

The proposed functional linearmixed-effectmodel (2) is different from the following functionalmixedmodel (Goldsmith
et al., 2011, 2012):

Yij = Zibi +


S
β(t)Xij(t)dt + ϵij, (3)

where bi ∼ N(0, σ 2
b I) accounts for the correlation in the repeated outcomes for the ith subject. The primary distinction

between models (2) and (3) is that the subject-specific random effect bi in (3) remains constant across visits, while the
random effect bi(t) in (2) allows this effect to vary with time. By including the random effect bi(t) in (2), this model can
characterize trends in the effects of functional predictors on scalar outcomes for different subjects.

Many nonparametric smoothers used for FLMs can be applied to fit model (2). In this article, we employ the smoothing
spline method (Ramsay and Silverman, 2005) to estimate βℓ(t) and biℓ(t) in (2). Next, we transform model (2) into a linear
mixed-effects model (LMM). Finally, we propose an REML-based EM algorithm to fit the LMM, the efficiency of which is
illustrated by examples.

The remainder of this article is organized as follows. Section 2 introduces a smoothing spline method to estimate the
above functional linear mixed-effects model. Section 3 implements simulations to evaluate the finite sample performance
of the smoothing spline method. The functional linear mixed-effects model is demonstrated through two real applications
in Section 4. Conclusions are given in Section 5.
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