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a b s t r a c t

Let π denote the intractable posterior density that results when the likelihood from amul-
tivariate linear regression model with errors from a scale mixture of normals is combined
with the standard non-informative prior. There is a simple data augmentation algorithm
(based on latent data from the mixing density) that can be used to explore π . Let h and d
denote themixing density and the dimension of the regressionmodel, respectively. Hobert
et al. (2018) have recently shown that, if h converges to 0 at the origin at an appropriate
rate, and

∫
∞

0 ud/2 h(u) du < ∞, then the Markov chains underlying the data augmentation
(DA) algorithm and an alternative Haar parameter expanded DA (PX-DA) algorithm are
both geometrically ergodic. Their results are established using probabilistic techniques
based on drift and minorization conditions. In this paper, spectral analytic techniques are
used to establish that something much stronger than geometric ergodicity often holds. In
particular, it is shown that, under simple conditions on h, the Markov operators defined
by the DA and Haar PX-DA Markov chains are trace-class, i.e., compact with summable
eigenvalues.Many standardmixing densities satisfy the conditions developed in this paper.
Indeed, the new results imply that theDA andHaar PX-DAMarkov operators are trace-class
whenever the mixing density is generalized inverse Gaussian, log-normal, Fréchet (with
shape parameter larger than d/2), or inverted Gamma (with shape parameter larger than
d/2).

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Consider the multivariate linear regression model

Y = Xβ + εΣ1/2, (1)

where Y denotes an n × d matrix of responses, X is an n × p matrix of known covariates, β is a p × d matrix of unknown
regression coefficients,Σ1/2 is an unknownpositive-definite scalematrix, and ε is an n×dmatrixwhose rows are iid random
vectors from a scale mixture of multivariate normal densities. In particular, letting ε⊤

i denote the ith row of ε, we assume
that εi has density

fh(εi) =

∫
∞

0

ud/2

(2π )d/2
exp

(
−

u
2
ε⊤

i εi

)
h(u) du,
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where h : (0,∞) → [0,∞) is the so-called mixing density. Error densities of this form are often used when heavy-tailed
errors are required. For example, it is well known that if h is a G(ν/2, ν/2) gamma density (with mean 1), then fh becomes
the multivariate Student’s t density with ν degrees of freedom.

A Bayesian analysis of the data from this regression model requires a prior on (β,Σ). We consider an improper default
prior that takes the formω(β,Σ) ∝ |Σ |

−a 1Sd (Σ), where Sd ⊂ Rd(d+1)/2 denotes the space of d×d positive definitematrices.
Taking a = (d + 1)/2 yields the independence Jeffreys prior, which is the standard non-informative prior for multivariate
location scale problems. Of course, whenever an improper prior is used, onemust check that the corresponding posterior dis-
tribution is proper. Letting y denote the observed value of Y , the joint density of the data fromModel (1) can be expressed as

f (y|β,Σ) =

n∏
i=1

[∫
∞

0

ud/2

(2π )d/2|Σ |
1/2 exp

{
−

u
2
(yi − β⊤xi)⊤Σ−1(yi − β⊤xi)

}
h(u) du

]
.

Define

m(y) =

∫
Sd

∫
Rp×d

f (y|β,Σ)ω(β,Σ) dβ dΣ .

The posterior distribution is proper precisely whenm(y) < ∞. LetΛ stand for the n× (p+d) matrix (X : y). Straightforward
arguments using ideas from Fernández and Steel [6] show that, together, the following four conditions are sufficient for
posterior propriety:

(S1) rank(Λ) = p + d;
(S2) n > p + 2d − 2a;
(S3)

∫
∞

0 ud/2 h(u) du < ∞;

(S4)
∫

∞

0 u−(n−p+2a−2d−1)/2 h(u) du < ∞.

These four conditions are assumed to hold throughout this paper.

Remark 1. Conditions (S1) and (S2) are known to be necessary for posterior propriety [6,9].

Remark 2. Condition (S3) clearly concerns the tail behavior of h. Similarly, condition (S4) concerns the behavior of h near the
origin, unless n−p+2a−2d−1 is negative, which is possible. Note, however, that (S2) implies that−(n−p+2a−2d−1)/2 <
1/2. Consequently, if n − p + 2a − 2d − 1 is negative, then (S4) is implied by (S3).

Of course, the posterior density of (β,Σ) given the data takes the form

π (β,Σ | y) =
f (y|β,Σ)ω(β,Σ)

m(y)
.

There is a well-known data augmentation (DA) algorithm that can be used to explore this intractable density [15]. Hobert
et al. [9] (hereafter HJKQ) performed convergence rate analyses of the Markov chains underlying this DA algorithm and an
alternative Haar parameter expanded DA (PX-DA) algorithm.

In this paper, we examine the chains from an operator theory perspective, and provide a substantial improvement
of HJKQ’s main result. A formal statement of the DA algorithm requires some buildup; unless otherwise noted, ‘‘the DA
algorithm’’ refers to the algorithm of Liu [15], rather than its Haar PX-DA alternative, which will be defined in Section 4.

Let z = (z1, . . . , zn) have strictly positive elements, and let Q = Q (z) be the n × n diagonal matrix whose ith diagonal
element is z−1

i . Also, define Ω = (X⊤Q−1X)−1 and µ = (X⊤Q−1X)−1X⊤Q−1y. For each s ∈ [0,∞), define a univariate
density as follows

ψ(u; s) = b(s) ud/2 e−su/2 h(u), (2)

where b(s) is the normalizing constant. The DA algorithm uses draws from the inverse Wishart (IWd) and matrix normal
(Np,d) distributions. These densities are defined in the Appendix. If the current state of the DA Markov chain is (βm,Σm) =

(β,Σ), then we simulate the new state, (βm+1,Σm+1), using the following three-step procedure.

Iterationm + 1 of the DA algorithm:

Step 1: Draw Z1, . . . , Zn independently in such a way that, for each i ∈ {1, . . . , n}, Zi ∼ ψ{·;
(
β⊤xi − yi

)⊤
Σ−1

(
β⊤xi − yi

)
},

and call the result z = (z1, . . . , zn).

Step 2: DrawΣm+1 ∼ IWd{n − p + 2a − d − 1, (y⊤Q−1y − µ⊤Ω−1µ)−1
}.

Step 3: Draw βm+1 ∼ Np,d(µ,Ω,Σm+1).
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