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a b s t r a c t

Developing mathematical models describing pipe (or duct) temperature is of great importance, since
pipes are unavoidable elements in most (hydraulic) heating systems, in which some heat transfer fluid
flows/circulates between neighbouring working components (such systems are district, central or solar
heating systems, etc.).
In the present study, the Newton’s law of cooling is completed with a recent explicit equation deter-

mining the time delay of pipes. Based on measured data, the gained mathematical model, called
physically-based model, describes the outlet (fluid) temperature of pipes with a convenient accuracy
with respect to the practice.
A further model, called LR model, is worked out based on multiple linear regression. Based on measured

data, the LR model can model the outlet temperature of pipes generally more precisely than the
physically-based model if the flow rate is nonzero. In addition, the LR model has lower computational
demand.
Since the physically-based model is still more precise under certain conditions, a third model, called

grey-box model, is proposed as a combination of the physically-based and the LR model calculating every
time according to the more advantageous one of them. Based on measured data, the grey-box model is
the most precise model. In addition, this model has lower computational demand than the physically-
based model.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Developing mathematical models describing pipe (or duct)
temperature is of great importance, since pipes are unavoidable
elements in most (hydraulic) heating systems, in which some heat
transfer fluid flows/circulates between neighbouring working com-
ponents. District heating systems, central heating systems and
solar heating systems can be mentioned here as particular
examples.

In many works, the heat loss effect, and even more often, the
time delaying effect, of pipes is neglected. Nevertheless, one or
both of the above pipe effects must be often considered, for exam-
ple, if the pipe is not so well insulated and/or the pipe is relatively
long. This is the case for district heating systems [1,2] or e.g. in [3],
where 5–10% more solar energy can be gained at a real solar heat-
ing system with differential control if the pipes are taken into
account precisely enough.

As for most other working components, differential equations
(DEs) are the most frequent mathematical models to model pipes.
See, for example, [4], when an inverse method is used to estimate

the inlet temperature on the basis of the governing DEs. In the sim-
plest case, a pipe is modelled with a single ordinary differential
equation (ODE) assuming homogeneous pipe (fluid) temperature
(with respect to space) as the single state variable. The heat loss
can be considered in such models [5], so they can be accurate
enough on an average in long terms, but, if the transients are
important, more sophisticated models should be used.

The most often model, describing both delay and heat loss, is
the linear one dimensional partial differential equation (PDE) cor-
responding to heat transfer and plug-flow (that is, the mixing and
temperature homogenization effects inside the pipe are neglected).
In other words, this model is the one dimensional linear transport
equation [6] describing the pipe (fluid) temperature supported
with a member with respect to heat loss, optionally. This PDE is
applied to model temperature distribution in solar collectors in
[7,8], in heat exchangers with connecting pipes in case of neglected
heat losses in [9], in chemical tubular reactor in [10] and in a dis-
trict heating system in [2]. In the latter difference, the PDE is used
to determine time delay directly as well. In [11], the PDE describing
the temperature distribution inside the pipe is applied to a water
heating equipment of pilot-scale in case of perfectly insulated
pipes. By means of a simplifying procedure, the PDE is transformed
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into two models for control purposes. One of them contains ODEs
for perfectly mixed sections, while the other one is a length inte-
grated model, determining the average of the temperature along
the pipe. Similarly, PDEs describing temperature distribution are
used for pipes and parallel-plate channels in [12] and for a basic
natural circulation loop in [13]. If the one dimensional linear heat
transfer equation corresponding to pipe temperature is applied to
the moving ‘‘fluid element” inside the pipe, essentially, the well-
known Newton’s law of cooling [14] is gained.

Although, PDEs are usually more difficult to handle than ODEs
and they cannot be solved exactly, solutions with desired precision
can be generally gained by means of discretization methods. For
example, in the TRNSYS software [15], which is widely used to sim-
ulate transient thermal processes in different heating systems, a
pipe is divided into segments, each of which has homogeneous
temperature and is modelled with an ODE. The pipes of district
heating systems are discretized in [1], after which, the temperature
is calculated numerically.

Although, PDEs can be generally solved numerically with
desired precision, there is a problem of principle with respect to
the (one dimensional) linear transport equation corresponding to
pipe (fluid) temperature. Namely, if the (pump) flow rate is inter-
mittent, that is, the flow rate is sometimes zero, the transport
equation may have no classical solution or may have not unique
solutions. Neither case satisfies the natural physical expectation
on definiteness (see Remark 2.1 in [16] for more details). This prob-
lem is avoided with nonzero flow rate (e.g. in [7,17]) or with
numerical solution (e.g. in [10]).

The problem of discontinuity can be overcome if heating sys-
tems affected with the delaying effect of pipes are modelled with
delay differential equations (DDEs) [18,19]. Most references on
thermal engineering problems deal with constant time delay.
See, for example, [20,21] on DDEs with respect to heat conduction
if the heat flux vector is endowed with time delay. In [22], the pipe
outlet temperature is described in time by means of a delayed
equation derived from the heat transfer PDE in case of constant
flow rate. An explicit formula is given to express the time delay
as a function of time in case of variable flow rate in [17], although,
it can be used only if the flow rate is nonzero. The concept is
improved in [16], where an explicit delay equation is proposed,
which can be applied to intermittent flow rates as well.

So far, white-box models were discussed as they are founded on
known physical phenomena. In case of black-box models, some
experienced/measured correlations are represented empirically.
In the present work, multiple linear regression (MLR) is used in
constructing a black-box model to determine the outlet tempera-
ture of pipes as a function of the inlet and ambient temperatures.
See [23], where solar collectors, as other working components of
heating systems, are modelled by means of MLR.

The contributions are the following in details in the present
study.

1. In the determination of the outlet (fluid) temperature, the New-
ton’s law of cooling is used to model the heat loss to the
ambiance of the pipe completed with the explicit delay equa-
tion of [16] to determine the time delay. This white-box model
is called physically-based model henceforth.

2. Furthermore, an MLR based model, called LR model, is worked
out to determine the outlet temperature of pipes as a simple
linear function of the inlet and ambient temperatures. It is pre-
sented based on measured data that the LR model is generally
more precise than the physically-based one if the flow rate is
nonzero. In addition, the LR model has lower computational
demand.

3. Since the physically-based model is still more precise under
certain conditions, a third model, called grey-box model, is pro-
posed as a combination of the physically-based and the LR
model calculating every time according to the more advanta-
geous one of them. Based on measured data, the grey-box
model is more precise than any of the other two models. In
addition, the grey-box model has lower computational demand
than the physically-based model.

The Matlab software [24] has been applied in this work to carry
out the needed calculations.

The organization of the paper is the following: Section 2 gives
common features on the pipe operation, the measurements and
the modelling corresponding to all of the studied models. In Sec-
tion 3 and 4, the physically-based and the LR model are con-
structed and their identification and validation are given based
on measured data. The grey-box model is proposed and validated
in Section 5. The detailed comparison of the models is given in Sec-
tion 6. Conclusions and recommendations for future research
works are given in Section 7.

2. Common features on pipe operation, measurements and
modelling

2.1. Pipe operation

Fig. 1 shows the pipe to be modelled.
Obviously, it takes a certain time for the ‘‘fluid element” leaving

the pipe inlet at time s to reach the outlet at time t. That is, the
delay d equals to t � s. If the (pump) flow rate in the pipe v is
not constant but a function of time vðtÞ, then sðtÞ also depends
on time t, as well as the delay dðtÞ, see Eq. (1).

dðtÞ ¼ t � s ð1Þ

Nomenclature

t time, s;
x space coordinate along the pipe, m

Time-dependent functions
T pipe temperature, �C;
Ta ambient temperature of the pipe, �C;
Tin inlet pipe temperature, �C;
Tout outlet pipe temperature, �C;
Tout;meas measured outlet pipe temperature, �C;
Tout;mod modelled outlet pipe temperature, �C;
v (pump) flow rate in the pipe, m3 s�1

Constant parameters
A area of pipe cross section, m2;
c specific heat capacity of the pipe fluid, Jkg�1 K�1;
k heat loss coefficient of the pipe, Wm�1 K�1;
L length of pipe, m;
V pipe volume, m3;
Dt time period between successive measurements on the

pipe, s;
q mass density of the pipe fluid, kgm�3

14 R. Kicsiny / International Journal of Heat and Mass Transfer 107 (2017) 13–20



https://isiarticles.com/article/110524

