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a b s t r a c t

Statistical training psychology focuses on frequentist methods. Bayesian methods are an alternative to
standard frequentist methods. This article provides researchers with an introduction to fundamental
ideas in Bayesian modeling. We use data from an electroencephalogram (EEG) and anxiety study to
illustrate Bayesian models. Specifically, the models examine the relationship between error-related
negativity (ERN), a particular event-related potential, and trait anxiety. Methodological topics covered
include: how to set up a regression model in a Bayesian framework, specifying priors, examining
convergence of the model, visualizing and interpreting posterior distributions, interval estimates, ex-
pected and predicted values, and model comparison tools. We also discuss situations where Bayesian
methods can outperform frequentist methods as well has how to specify more complicated regression
models. Finally, we conclude with recommendations about reporting guidelines for those using Bayesian
methods in their own research. We provide data and R code for replicating our analyses.

© 2017 Elsevier Ltd. All rights reserved.

Mandatory statistical training in psychology largely consists of
training in analysis of variance (ANOVA) and linear regression.
Some students also take advanced courses in structural equation
modeling, multilevel modeling, or psychometrics (Aiken, West, &
Millsap, 2008; Schwartz, Lilienfeld, Meca, & Sauvign�e, 2016).
Regardless of the specific topics, most statistical training will be
from a frequentist perspective, where frequentist refers to a
particular perspective on probability. Specifically, frequentist
methods allow for long-run probability statements or probability
statements about repeated sampling from a population (McElreath,
2016). Imagine a study comparing cognitive therapy and behavioral
activation for depression. The null hypothesis for a t-test comparing
the conditions after treatment is: The post-treatment mean for
cognitive therapy does not differ from the post-treatment mean for
behavioral activation in the population. Suppose the mean differ-
ence between the two treatments has a two-tailed p-value of 0.01.
The correct interpretation of this p-value is: In the long-run, the
probability of observing a difference as extreme or more extreme
than the difference in this study is 0.01, if the null hypothesis is true.
Said another way, if researchers repeatedly sampled from a popu-
lation where cognitive therapy and behavioral activation are

equally effective, the proportion of results across the samples that
are as or more extreme than this study would be p. Likewise, a 95%
confidence interval for the difference between these two treat-
ments is interpreted as: Over repeated samples from the popula-
tion, 95% of intervals constructed will contain the population
difference. The interpretation does not describe the probability that
a parameter is within an interval, but rather the performance of the
method over many samples.

Frequentist methods are powerful and useful in many contexts;
however, psychology's adoption of parts of frequentist methodol-
ogy have not necessarily born fruit and may hinder scientific
progress (cf. Meehl, 1978). The field's reliance on p-values and null
hypothesis significance testing has been heavily criticized. Example
problems include: (a) p-values are probabilities assuming the null is
true and researchers often want to know the relative probability of
the null as compared to an alternative (i.e., how much evidence is
there for particular hypotheses; cf. Cohen, 1994); (b) flexibility in
analysis (e.g., p-hacking, garden of forking paths) can heavily
distort p-values (Gelman & Loken, 2014; Simmons, Nelson, &
Simonsohn, 2011); (c) authors, reviewers, and editors privileging
statistically significant results over non-significant results may
distort the published literature (Greenwald, 1975) as well as create
incentives that can lead to poor data analysis practices (cf.
Rosenthal, 1994); (d) a focus on p-values leads to a binary decision
regarding whether an effect is scientifically important (Gelman &
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Carlin, 2014); (e) privileging p-values has reduced attention to
precise predictions (Meehl, 1978); and (f) p-values do not neces-
sarily help establish whether an effect is true or valid (Ioannidis,
2005).

Bayesian methods are an alternative to null hypothesis testing.
They are useful tools that can help us learn about data and they can
help us place more emphasis on important issues, such as uncer-
tainty in estimates. However, thoughtful data analysis does not
require Bayesian methods. Bayesian methods do not necessarily fix
the problems listed abovedthey do not in and of themselves pre-
vent problems with researcher flexibility just as null hypothesis
testing did not produce the problems with research flexibility.
McElreath's (2016) perspective is useful here: “This audience ac-
cepts that there is something vaguely wrong about typical statis-
tical practice in the early 21st century, dominated as it is by p-
values and a confusing menagerie of testing procedures …. The
problem in my opinion isn't so much p-values as the set of odd
rituals that have evolved around them, in the wilds of sciences, as
well as the exclusion of so many other useful tools” (p. xi-xii).
Bayesian methods can be a useful tool that helps researchers
move beyond hunting for statistical significance and instead focus
on other aspects of statistical models such as prediction, model fit,
data visualization, and uncertainty. None of these things are unique
to the Bayesian methods, but they are a natural outgrowth of the
Bayesian perspective. A further advantage of Bayesian methods is
that the tools available for evaluating and understanding simple
models generalize fairly easily to more complex models. That is, as
we move from normal to non-normal data or single-level to multi-
level data, the methods and ideas we use to fit and evaluate the
models remains the same.

The primary aim of this paper is to introduce clinical researchers
to the fundamentals and foundational ideas of Bayesian models. No
attempt is made to be exhaustive or to give readers all the tools
needed to transition their analyses to Bayesian methods. Rather we
aim to “get the ball rolling” by introducing Bayesian concepts with
an accessible statistical modeldlinear regression. Given that most
readers are familiar with regression, this will allow readers to easily
identify how the Bayesian approach is similar and how it is
different from traditional approaches. Where relevant, we have
included references to texts and other resources where readers can
find more information.

This paper is divided into five parts. First, we provide necessary
background information about Bayesian methods. Second, we
discuss an example dataset and show how to build a Bayesian
model. Third, we examine the results of the analyses and show how
we can extend the model. Fourth, we discuss how additional kinds
of models can be constructed. Fifth, we provide Minimum Practice
Guidelines that we recommend for researchers using and reporting
Bayesian methods. Finally, to aid readers in learning the material,
we have included an online appendix that contains the data and R
code we used to perform the analyses and create the figures we
report. Likewise, given that we introduce new terms, we have
included an Appendix with a glossary of potentially unfamiliar
terms.

1. Background

1.1. Bayes’ theorem

Bayesian inference is straightforward.We start with a prediction
about the parameters in the model (e.g., the difference between
two groups or the correlation between X and Y). Specifically, we
make predictions about the probability of specific parameter val-
uesdfor example, are positive correlations more plausible than
negative correlations or are all correlations equally plausible? Then

one uses data to update the predictions about the probability of the
parameters. Simply put, Bayesian analysis produces information
about the probability of the parameters in the model that is the
combination of the predictions about the parameters and what is
learned about the parameters from the data (Kruschke, 2015;
McElreath, 2016).

The prediction about the probability of the parameters is known
as the “prior” because it represents the predictions about the
parameter prior to seeing the data. Suppose we begin a study to
evaluate the effectiveness of a new psychotropic medication for
depression. Effectiveness is defined as the probability that someone
will recover and not have clinically significant symptoms after 16
weeks of treatment. We do not know anything about the effec-
tiveness of the treatment; therefore, we believe, before seeing the
data, that the probability of recovery is evenly distributed between
0 and 1 (see the solid line in the top panel of Fig. 1)1. This is the prior
for the analysis of treatment effects.

Researchers new to Bayesian methods may be uncomfortable
with priors because priors appear to introduce subjectivity into the
analyses. That is, if two researchers can obtain different results with
the same dataset by choosing different priors, then which can be
trusted? On the face of it, this seems like a reasonable concern.
However, it is likely overblown for at least four reasons. First,
subjectivity is part of any research project. The measures, design,
participants, questions, and review process are all subjective and
influenced by the biases, experience, and knowledge of researchers.
For example, researchers may choose a particular statistical anal-
ysis method such as an ANOVA not because it is the best tool for the
particular situation but because that is what they know or have
used in previous publications. Likewise, researchers may select
measures because they believe they are the most psychometrically
sound or the best representation of the constructs of interest.
Although these decisions can be carefully thought out and
reasonable, the decisions are subjectivedthey are based on re-
searchers’ understanding and interpretation of the literature.

Second, researchers often know a lot about a topic that can in-
fluence their choice of prior distributions. This knowledge can
include simple things like the range of the outcome variable, which
will put limits on possible values parameters such as treatment
effects. This knowledge can also include more complicated infor-
mation such as plausible sizes of correlations or treatment (cf.
Baldwin & Fellingham, 2013). Third, all statistical methods, fre-
quentist or Bayesian, make assumptions that are not objective
(Greenland, 2006). Fourth, choices about the likelihood for the data
(e.g., are the data normally distributed? Binary? Count? Highly
skewed?) are often far more important than the choice of the prior
(Atkins & Gallop, 2007; Baldwin, Fellingham, & Baldwin, 2016).

Some researchers distinguish between objective and subjective
priors. Objective priors aim to make minimal assumptions. Sub-
jective priors incorporate all information available to the researcher
about the parameters of interest (Rouder, Speckman, Sun, Morey, &
Iverson, 2009). As noted above, we believe it is scientifically
defensible to incorporate knowledge about parameters into
models. Indeed, if prior information is ignored, one should explain
why. In the end, all scientific decisions are evaluated by the
research community, both before and after publication. Likewise,
priors can and should be evaluated by the research community.

Returning to the example, after specifying the prior, we collect
data on 10 participants and just 1 of the 10 recovers after 16 weeks

1 Priors do not need to be flat. We likely know something about the average
recovery rate of many drugs or even placebo, so a flat prior like this isn’t particularly
convincing. However, we use a flat prior at this point to help solidify understanding
of the concept.
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