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a b s t r a c t 

The task of classifying is natural to humans, but there are situations in which a person is not best 

suited to perform this function, which creates the need for automatic methods of classification. Tradi- 

tional methods, such as logistic regression, are commonly used in this type of situation, but they lack 

robustness and accuracy. These methods do not not work very well when the data or when there is noise 

in the data, situations that are common in expert and intelligent systems. Due to the importance and the 

increasing complexity of problems of this type, there is a need for methods that provide greater accu- 

racy and interpretability of the results. Among these methods, is Boosting, which operates sequentially by 

applying a classification algorithm to reweighted versions of the training data set. It was recently shown 

that Boosting may also be viewed as a method for functional estimation. The purpose of the present study 

was to compare the logistic regressions estimated by the maximum likelihood model (LRMML) and the 

logistic regression model estimated using the Boosting algorithm, specifically the Binomial Boosting algo- 

rithm (LRMBB), and to select the model with the better fit and discrimination capacity in the situation 

of presence(absence) of a given property (in this case, binary classification). To illustrate this situation, 

the example used was to classify the presence (absence) of coronary heart disease (CHD) as a function 

of various biological variables collected from patients. It is shown in the simulations results based on 

the strength of the indications that the LRMBB model is more appropriate than the LRMML model for 

the adjustment of data sets with several covariables and noisy data. The following sections report lower 

values of the information criteria AIC and BIC for the LRMBB model and that the Hosmer–Lemeshow test 

exhibits no evidence of a bad fit for the LRMBB model. The LRMBB model also presented a higher AUC, 

sensitivity, specificity and accuracy and lower values of false positives rates and false negatives rates, 

making it a model with better discrimination power compared to the LRMML model. Based on these re- 

sults, the logistic model adjusted via the Binomial Boosting algorithm (LRMBB model) is better suited to 

describe the problem of binary response, because it provides more accurate information regarding the 

problem considered. 

© 2016 Published by Elsevier Ltd. 

1. Introduction 

In many situations a researcher is faced with the need to per- 

form a data classification. This is especially the case when the sam- 

ple size under consideration present some type of disturbance, so 

that conventional statistical methods may present unacceptable er- 

ror classification rates. 

Bearing this in mind, a plausible alternative can be achieved 

by a combination of computational methods and statistical tech- 
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niques. This problem can be resolved by constructing an automatic 

classifier, which uses data from the problem at hand to create a 

rule to classify other data (independent from the previously shown 

data) in the future. The way this rule is created directly influences 

aspects such as the performance and interpretability of the classi- 

fier. 

It is worth noting that when using the statistical technique 

of logistic regression in situations involving classification, the re- 

sponse to a particular phenomenon does not constitute a continu- 

ing situation, i.e., it admits the existence of categories, which may 

take two or more values. In these cases, logistic regression, whose 

parameter estimation is performed through maximum likelihood, 

has been applied frequently, and it returns the probability of a par- 

ticular event occuring, as estimated using a logistic model. Logistic 
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regression assumes quite interpretable rules, but with restrictive 

forms for the relationship between the predictor variables and re- 

sponses. 

Recently Skurichina and Duin (2002) , bagging, boosting and the 

random subspace method have become popular combination tech- 

niques for improving weak classifiers. These techniques are de- 

signed for, and usually applied to, decision trees. It is shown that 

the performance of these combination techniques is strongly af- 

fected by the small sample size of the base classifier: boosting is 

useful for large training sample sizes, while bagging and the ran- 

dom subspace method are useful for critical sample sizes. Other 

results ( Dietterich, 20 0 0; Gey & Poggi, 20 06; Kalai, 20 05 ) show an 

experimental comparison of the three ensemble methods of bag- 

ging, boosting and randomization. It is show that in situations of 

little or no classification noise, randomization is competitive with 

bagging but not as accurate as boosting. In situations with substan- 

tial classification noise, bagging is much better than boosting, and 

sometimes better than randomization. 

To improve the interpretability and performance of classifica- 

tion methods applied to a variety of problems, the Boosting algo- 

rithms, inspired by statistical physics and computer science, op- 

erate by sequentially applying a classification algorithm to a set 

of versions reweighted training data, providing greater weight to 

observations misclassified in the previous step. The Boosting algo- 

rithm were introduced by Schapire (1990) and since then, several 

variants have been created. Recently, Friedman (2001) showed that 

boosting may also be viewed as a method for functional estimation 

and can be used to estimate a logistic regression model. The pur- 

pose of this paper is to analyze the performance of the Boosting 

algorithm, specifically the Binomial Boosting algorithm (LRMBB) 

in classification problems involving binary responses compared to 

the logistic regression model estimated by the maximum likeli- 

hood method (LRMML). In addition, the main issues of the sta- 

tistical approach of the Boosting algorithm will be presented. 

Sections 1.1 and 1.2 present logistic regression and the Gradient 

Boosting algorithm. In Section 1.3 the quality criteria for adjust- 

ment are presented. In the Section 2 , an example (CHD data) and 

the methodology are presented. In Section 3.1 simulation results 

show the strengh of the LRMBB algorithm in comparison to the 

LRMML algorithm, and Sections 3.2 and 3.3 show the results based 

on the trained and test data sets. Section 3.4 shows the odds ra- 

tio results applied in the models studied, showing that superior 

discrimination is obtained using the LRMBB model (Boosting algo- 

rithm). In the Discussion ( Section 3.5 ) summarizes and compares 

the results, and the Conclusions ( Section 4 ) states that the prob- 

lem of binary classification is resolved in a more reliable fashion 

with superior discrimination using the Binomial Boosting (LRMBB) 

algorithm rather than the logistic regression (LRMML) algorithm. 

1.1. Logistic regression 

In linear regression models with single or multiple independent 

variables X , the dependent variable Y is a continuous random vari- 

able in nature. However, in some situations, the dependent variable 

is qualitative and expressed by two or more categories, in other 

words, it admits two or more values. In this case, the method of 

least squares does not provide plausible estimators. A good approx- 

imation is obtained by logistic regression, which allows the use of 

a regression model to calculate or predict the likelihood of a spe- 

cific event ( π ( x )) ( Atkinson, 1985 ). 

The following presents the binary logistic regression model, 

which is a particular case of a generalized linear model, more 

specifically, the logit models . 

To analyze π ( x ), the independent observations x 1 , x 2 , . . . , x n 
are made. In this context, it is reasonable to assume, as an ini- 

tial assumption, that π ( x ) is a monotonic function with values 0 < 

π ( x ) < 1, i.e., π ( x ) is a probability distribution function. 

Because π ( · ) ranges between zero and one, a simple linear 

representation for π over all possible values of x is not adequate, 

because its values are linear in the range ( −∞ , + ∞ ) . In this case, 

a transformation must be used to allow for any value of x to have 

a corresponding value in the range [0, 1]. Considering the logistic 

transformation, also called logit , then 

logit = ln 

(
π( x ) 

1 − π( x ) 

)
= β0 + β1 x 1 + · · · + βp x p (1) 

The ratio 
π( x ) 

1 −π( x ) 
, called chance ( odds ) ranges from ( 0 ; + ∞ ) . 

Then, (log e ( odds )) ranges from ( −∞; + ∞ ) . 

Naturally, from Eq. 1 , we have 

e log it = e β0 + β1 x 1 + ... + βp x p 

π( x ) 

1 − π( x ) 
= e β0 + β1 x 1 + ... + βp x p 

The inverse of the logit function ( Eq. 1 ) is the logistic function, 

given by 

π( x ) = 

exp ( β0 + β1 x 1 + . . . + βp x p ) 

1 + exp ( β0 + β1 x 1 + . . . + βp x p ) 
(2) 

where π ( x ) varies in [0; 1]. 

In the case where we have an explicative variable in the model, 

x 1 , if β1 > 0 , π is increasing, and if β1 < 0 , π is decresing. The 

case where β0 = 0 and β1 = 0 corresponds to π( x ) = 0 , 5 . 

The estimation vector β of the parameters is obtained through 

the method of maximum likelihood ( Hosmer & Lemeshow, 1989 ). 

1.2. Gradient Boosting Friedman Algorithm 

Friedman and Hastie (20 0 0) and Friedman (20 01) developed 

more generally, a structure that leads to the direct statistical in- 

terpretation of boosting as a method for functional estimation. 

In the context of boosting, the objective function is to estimate 

an optimal prediction of f ∗( · ), also called the minimizer popula- 

tion, which is defined by 

f ∗( ·) = arg min 

f 

E Y,X [ ρ( Y, f ( X ) ) ] (3) 

where ρ( ·, · ) is the loss function which is assumed as dif- 

ferentiable and convex with respect to f . In practice, we work 

with realizations (y i , x 
T 
i 
) , i = 1 , . . . , n, of ( y , x T ), and the expec- 

tation on Eq. 3 is therefore not known. For this reason, instead 

to minimize the expected value of Eq. 3 , the Boosting algorithms 

instead minimize the observed average loss, which is given by 

n −1 
∑ n 

i =1 ρ( Y i , f ( X i ) ) , following interactively the functional space 

of the parameters of f . The following algorithm was presented by 

Friedman (2001) , and is also called Gradient Boosting Friedman Al- 

gorithm. 

1. Initialize ˆ f ( 0 ) ( ·) with a initial guess. Usual choices are 

ˆ f ( 0 ) ( ·) = arg min 

c 

1 

n 

N ∑ 

i =1 

ρ( Y i , c ) 

or ˆ f ( 0 ) ( ·) = 0 . Set m = 0 . 

2. Increase m by 1. Calculate the negative gradient − ∂ 
∂ f 

ρ( Y, f ) 

and calculated in 

ˆ f ( m −1 ) ( X i ) : 

z i = − ∂ 

∂ f ( x i ) 
ρ( Y i , f ( x i ) ) | f ( x i ) = ̂ f ( m −1 ) ( x i ) 

i = 1 , . . . , n 
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