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Surrogate modeling, or metamodeling, is an efficient way of alleviating the high computational cost and 
complexity for iterative function evaluation in design optimization. Accuracy is significantly important 
because optimization algorithms rely heavily on the function response calculated by surrogate model and 
the optimum solution is directly affected by the quality of surrogate model. In this study, an optimized 
trend kriging model is proposed to improve the accuracy of the existing kriging models. Within the 
framework of the proposed model, regression analysis is carried out to approximate the unknown trend 
of the true function and to determine the order of the universal kriging model, which has a fixed form 
with a mean structure dependent on the order of model. In addition, the selection of an optimal basis 
function is conducted to separate the useful basis function terms from the full set of the basis function. 
The optimal subset of the basis function is selected with the global optimization algorithm; which can 
accurately represent the trend of true response surface. The mean structure of proposed model has been 
optimized to maximize the accuracy of kriging model depending on the trend of true function. Two-
and three-dimensional analytic functions and a practical engineering problem are chosen to validate the 
proposed model. The results showed that the OTKG model yield the most accurate responses regardless 
of the number of initial sample points, and can conversed into well-trained model with few additional 
sample points.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction

Industry and academia have continuously been attempting to 
solve engineering design problems with complex geometry and a 
highly unsteady flow because computing performance has been 
continuously growing. To find the optimal solution of engineer-
ing system, the objective and constraint functions as a function 
of the design variables have to be iteratively evaluated. However, 
high-fidelity analysis of the complex configuration, such as an air-
plane including the pylon and the intake or the unsteady sim-
ulation of rotary systems (e.g., helicopter rotors, wind turbines, 
and open rotor systems), still requires a computing time of sev-
eral hours or days to obtain the converged solutions. It is nearly 
impossible for high-fidelity analysis to be directly applied to the 
design optimization process because of high computational costs 
and resources. The surrogate model, which is often called a meta-
modeling is an efficient way to alleviate this computational burden. 
It represents a true response surface using a simple mathematical 
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function with evaluated function values of sample points. Then, 
the iterative and expensive function evaluation can be substituted 
for modeled response surface instead of actual simulation. There-
fore, the accuracy of the surrogate model is significant because 
the optimization results are significantly affected by the quality of 
the surrogate model. However, constructing high-fidelity surrogate 
model for complex problems with numerous variables are chal-
lenging because large number of variables has much influence on 
the efficiency of the optimization process. P. Hao et al. suggested 
a bi-step surrogate-based optimization framework with adaptive 
sampling to build high-fidelity surrogate modes with less compu-
tational cost for complex engineering designs [1].

Several surrogate models have been developed, such as polyno-
mial response surfaces, Artificial Neural Networks (ANN) [2,3], Ge-
netic Programming (GP) [4], Support Vector Regression (SVR) [5], 
the Radial Basis Function (RBF) [6], Moving Least Squares (MLS), 
and the Kriging model [7]. The kriging model is one of the most 
attractive models because it has a good capability of dealing with 
nonlinear response. Although the true function is explicitly un-
known, the kriging model can provide statistical error information 
that is modeled using a Gaussian process as well as the predicted 
function response at an untried point. Therefore, it is widely used 
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in various research fields, including spatial analysis, mathematical 
geology, and engineering.

The fundamental formulation of the kriging model is consisted 
of the two parts: the drift function and the deviation function. The 
former represents the global trend of the kriging model, while the 
latter is a localized variation between the true and the drift func-
tions. The accuracy of the kriging model relies greatly on how to 
formulate them. Many studies have been conducted to improve 
the accuracy of the kriging model. H.S. Chung and J.J. Alonso used 
secondary information, such as the values of the gradient, in addi-
tion to primary function values at sample points for constructing 
a covariance matrix of the deviation terms [8]. Z.H. Han et al. 
suggested a new Cokriging model that utilized both the function 
values at sample points obtained by the variable fidelity analysis 
and gradient values computed by the adjoint method to generate 
the kriging model [9,10]. Their results show that the accuracy of 
the kriging model can be enhanced by using the gradient informa-
tion and the function values computed by variable fidelity analysis. 
They have focused on the modification of deviation terms to im-
prove the quality of the kriging model. In contrast, V.R. Joseph 
et al. proposed the blind kriging model that uses the optimally 
selected basis functions to model the trend function. The opti-
mal subset of basis functions can be selected by the Bayesian 
forward selection process [11]. However, the Bayesian forward se-
lection process could easily get stuck in the local optimum solution 
rather than finding the global optimum. This converging problem 
was overcome in dynamic kriging model which was suggested by 
L. Zhao et al. In dynamic kriging model, the optimization prob-
lem of selecting basis functions from the candidates of basis func-
tions was solved by using genetic algorithm which is one of the 
most popular global optimization algorithm. The kriging process 
variance was used as the objective function of the optimization 
problem for finding the optimal subset of basis function. It was 
found that the quality of the kriging model can be enhanced by 
excluding unnecessary polynomial terms in the full set of basis 
function [12]. However, H. Liang and M. Zhu pointed out that 
the kriging process variance cannot be set to be the objective 
function of the optimization problem for searching optimal basis 
functions and genetic algorithm cannot converge to the global op-
timum. It is analytically proved [13]. A revised dynamic kriging 
model has been proposed to design the trend function using cross-
validation method, and the cross-validation root mean-square error 
and cross-validation error correlation coefficients were used to be 
the objective function in the optimization problem of designing the 
trend function [14]. To find the optimal subset of basis function 
in the optimization problem, the highest-order of trend function 
needs to be determined first. In dynamic and revised dynamic krig-
ing model, it is determined to satisfy a constraint associated with 
the number of samples and the total number of possible candi-
dates of basis functions. However, this constraint depends strongly 
on the number of sample points and does not consider the trend 
of the true response. H.I. Kwon and S.I. Choi has developed the R2

indicator based on regression analysis. The coefficient of determi-
nation, denoted R2 indicates that how well the regression model 
can approximate the trend of sample points. The unknown trend 
of the true response could be approximately predicted, and the 
well-matched order of the universal kriging (UKG) model can be 
determined depending on the coefficients of determination. It is 
called the trended kriging (TKG) model because its mean structure 
is constructed to fit the trend of the true response more accurately 
by considering the trend of the true function. The results showed 
that the TKG can improve the accuracy of the model by adjusting 
its drift function to the identified trend of the true function [15]. 
However, the form of the drift function in the mean structure is 
fixed as a p-th order polynomial function. Although the order of 
the drift function is properly determined from the regression anal-

ysis, the unnecessary terms in the fixed form of the drift function 
could deteriorate the quality of the kriging model.

In this study, an optimized trend kriging (OTKG) model is sug-
gested to improve the accuracy of the TKG model by excluding the 
unnecessary terms from full set of basis function in mean struc-
ture. Therefore, we adopted the global optimization algorithm to 
separate the useful terms from the fixed form of the basis func-
tion of the TKG. In order to validate the OTKG model and compare 
its accuracy with the ordinary kriging (OKG) model and the UKG 
models, two- and three-dimensional analytic functions were ap-
plied. The validation results verified that the proposed OTKG model 
can be applied to any trend of response and provide a more accu-
rate response surface than existing kriging models. The proposed 
OTKG model was also applied to a practical engineering problem. 
The numerical example shows that the OTKG model can more ac-
curately represent the true response, despite a lack in the number 
of sample points.

The outline of this paper is as follows. The methods for the op-
timized OTKG model, including the basic background of the kriging 
model, trend identification and optimal basis selection process, are 
introduced in the following section. The detailed validation proce-
dure and the results of using two- and three dimensional analytic 
functions are described in section 3. Section 4 explains a practical 
engineering problem and shows the results of model comparison, 
depending on the dimension of the problem, and the accuracy of 
the proposed model and the existing model are compared. Our 
conclusions are discussed in Section 5.

2. Background and methods

2.1. Kriging model

The kriging model was initially suggested to find locations for 
a borehole by D.G. Krige [7] and mathematically formulated by 
G. Matheron [16]. It is an interpolation-based surrogate model and 
perfectly passes through all sample points which are extracted by 
the Design of Experiment (DoE) approach. The function values of 
selected sample points must be evaluated by numerical simulation 
or experimentation. In the kriging model, the deterministic form of 
the true function is assumed to be the stochastic form of the func-
tion. As mentioned above, the kriging model is modeled as the 
sum of the drift function and the deviation function, as shown by 
Eq. (1). The first term on the right-hand side of Eq. (1) is the mean 
structure of the model that globally presents and emulates a mean 
trend of the true response, while the second term is a deviation 
between the true and drift functions.

y = Fβ + Z (1)

The drift function in the kriging model can be formulated using 
the p-th order polynomial function which is called as p-th order 
universal kriging (UKG) model. Its drift function can be written 
as shown by Eqs. (2)–(4), where y is the vector of the response 
values at the sample points, x is the vector of the sample points 
(x = [x1, x2, . . . , xm]T with xi ∈ Rn), n is the number of design vari-
ables (the dimension of the design space), and m is the number of 
sample points. In this study, the Latin Hypercube Sampling (LHS) 
method is used to randomly select the sample points in the design 
space. It is known that the LHS method is well-fitted to the kriging 
model [17]. F is the m × k model matrix that is composed of the 
p-th order polynomial form of the basis function, where k is the 
number of elements in the full basis function, f(x). β is the vector 
of the regression coefficients for the polynomial function that is 
determined with the Generalized Least Square (GLS) method [18].
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