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a b s t r a c t 

In this paper, we study the bifurcation and stability of a ratio-dependent predator-prey model with non- 

constant predator harvesting rate. The analysis is carried out both analytically and numerically. We de- 

termine stability and dynamical behaviours of the equilibria of this system and characterize codimension 

1 and codimension 2 bifurcations of the system analytically. Our bifurcation analysis indicates that the 

system exhibits numerous types of bifurcation phenomena, including Fold, Hopf, Cusp, and Bogdanov–

Takens bifurcations. We use the numerical software MATCONT, to compute curves of equilibria and to 

compute several bifurcation curves. We especially approximate a family of limit cycles emanating from a 

Hopf point. Our results generalize and improve some known results and show that the model has more 

rich dynamics than the ratio-dependent predator-prey model without harvesting rate. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent years, great attention has been paid to the manage- 

ment of renewable resources, because mankind is facing the prob- 

lems about shortage of resources and a worsening environment. 

From the view of human needs, the exploitation of biological re- 

sources and harvest of population are commonly practised in the 

fields of fishery, wildlife, and forestry management. From those 

earlier results, we can see that harvesting has a strong impact on 

population dynamics, which may range from the rapid depletion to 

the complete preservation of biological population. Hence, harvest- 

ing has been studied widely (see [27] ). The predator-prey system 

plays an important and fundamental role among the relationships 

between the biological populations. Many scholars have carried out 

the study of the prey-predator system with various functional re- 

sponses, such as the Monod-type (see [8,12,13] ), Holling-type (see 

[14–20] ), Ivlev-type (see [21,23] ), and so on. Predator-prey mod- 

els with different functional responses or (and) harvesting are re- 

fined so as to better reflect the specific characteristics of the dif- 

ferent populations or economical needs (see [10,23–25] ). The pro- 

posed models usually depend on some parameters and are stud- 

∗ Corresponding author. 

E-mail address: Khoshsiar@sci.sku.ac.ir (R. Khoshsiar Ghaziani). 

ied by bifurcation methods. Local stability of population models of 

two species governed by planar systems of first order autonomous 

differential equations can be studied by the well-known qualita- 

tive theory on phase portraits of planar systems [2,4,8,13–15,18,20] . 

The main aim of this paper is to study the pattern of bifurcation 

that takes place as we vary some of the model parameters. We es- 

pecially focus on the biological implications of the found bifurca- 

tions. Most importantly, we show that the Hopf bifurcation plays, 

for various reasons, a crucial role. Ecological systems are complex 

because of the diversity of biological species as well as the com- 

plex nature of their interactions. We further analytically character- 

ize the Bogdanov–Takens bifurcation which is an organising centre 

of the dynamics of the system. In this paper we rely heavily on 

advanced continuation and bifurcation techniques implemented in 

the software package MATCONT [1,5,6] to obtain results that can- 

not be obtained analytically. 

MATCONT is a dynamical toolbox based on numerical contin- 

uation technique which is a well-understood subject [1,3,7] . This 

software computes a solution curve of equation F (x ) = 0 for the 

system of the form 

dx 

dt 
= f (x, α) 

with x ∈ R 

n , f (x, α) ∈ R 

n , and α a vector of parameters where 

equilibria, limit points, limit cycles, etcetera can be computed. 
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MATCONT is compatible with the standard MATLAB ODE of 

differential equations. General descriptions, functionalities and the 

dynamical algorithms implemented in MATCONT can be found in 

[1,5,6] . 

We consider the ratio-dependent predator-prey model with 

nonconstant predator harvesting rate: ⎧ ⎪ ⎨ 

⎪ ⎩ 

du 

dt 
= ru 

(
1 − u 

k 

)
− c 1 u v 

u + m v 
, 

dv 
dt 

= v 
(
−d + 

c 2 u 

u + m v 

)
− h v , 

(1) 

where u ( t ) and v ( t ) denote population densities of prey and preda- 

tors at time t , respectively. The parameters r, K, c 1 , m, d and 

c 2 are positive constants and present the prey intrinsic growth 

rate, the carrying capacity K in the absence of predation, cap- 

turing rate, half capturing saturation constant, the death rate of 

the predators and the conversion rate, respectively. The param- 

eter h ≥ 0 denotes the predator harvesting rate. The term 

c 1 u 
u + m v 

is called the ratio-dependent functional response of Holling type 

II. We note that the system (1) with h = 0 becomes the clas- 

sic ratio-dependent predator-prey models without any harvesting 

rates studied in [8,11] . 

Using the transformation: x = 

u 
K , y = 

m v 
K and t = rt, one can 

write the system (1) into the following equivalent system ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

dx 

dt 
= x (1 − x ) − αxy 

x + y 
, 

dy 

dt 
= y 

(
−γ + 

βx 

x + y 

)
− δv , 

(2) 

where α = 

c 1 
rm 

, β = 

c 2 
r , γ = 

d 
r and δ = 

h 
r . The parameters α, β , γ

and δ have the same biological meanings as c 1 , c 2 , d and h , re- 

spectively. The stability of the systems (1) and (2) was studied in 

[4,9,15] . It was shown in [15] that under suitable conditions on 

the parameters there are two positive equilibria of (2) , namely, 

a predator free equilibrium and an interior equilibrium. Stronger 

sufficient conditions were given in [4] for the existence of posi- 

tive equilibria of (1) . It was shown without proofs in [9] that the 

predator free equilibrium of (2) is a saddle point or a stable equi- 

librium under β > γ + δ or β < γ + δ, and the interior equilibrium 

can be a stable or unstable focus or node or center by compar- 

ing the parameter α and another number depending on β , δ and 

γ . The asymptotic stability of the equilibria of (1) was studied in 

[4] , where some sufficient but complicated conditions on the pa- 

rameters are given. The methods used in [4,9] are to determine 

the signs of the eigenvalues of the Jacobian matrices at the posi- 

tive equilibria. The globally asymptotic stability of the classic ratio- 

dependent population models (1) with h = 0 were studied for ex- 

ample in [8,11] , where a few sufficient conditions on the parame- 

ters were provided to ensure that (1) is globally asymptotic stabil- 

ity at the equilibria. We refer to [26,27] for the study on the sta- 

bility in (2) with constant predator and prey harvesting rate and 

to [13,18,28] for the study on other population models with prey 

harvesting rate. 

This paper is organized as follows: In Section 2 , we consider 

the mathematical model and discussed some basic dynamical re- 

sults like positivity, boundedness of solution and existence of pos- 

sible equilibria. In Section 3 , the stability of equilibria, Hopf bifur- 

cation of the interior equilibrium point of the system is discussed. 

In this Section, we show that in a small neighbourhood of the inte- 

rior equilibrium point, the system undergoes the Cusp bifurcation 

and Bogdanov–Takens bifurcation of codimension 2, when the pa- 

rameters vary in a small neighbourhood of some parameter values. 

Numerical bifurcation results are included to support our analytical 

results in Section 4 . The paper concludes with a brief discussion in 

Section 5 . 

2. Preliminaries 

In this section, we shall present some preliminary results. The 

parameters α, β , γ and δ represent prey capturing rate, prey con- 

version rate, death rate of the predator and harvesting rate on 

predator, respectively. In particular, if δ = 0 , then (2) becomes the 

following classic ratio-dependent predator-prey model without any 

harvesting rate: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

dx 

dt 
= x (1 − x ) − αxy 

x + y 
= f (x, y ) , 

dy 

dt 
= y 

(
−γ + 

βx 

x + y 

)
= g(x, y ) , 

(3) 

The system (2) is equivalent to (3) which is studied in [11] . We 

recall that ( x, y ) ∈ R 2 is an equilibrium of (2) if it satisfies f (x, y ) = 

0 and g(x, y ) = 0 . An equilibrium point ( x, y ) is said to be positive 

if x, y ≥ 0 and be a positive interior equilibrium if x, y > 0. 

Assume that α > 0, 0 < γ < β and δ1 < δ < β − γ , where δ1 := 

δ1 (α, β, γ ) = max { 0 , β − γ − β
α } , Then the system (2) has a 

unique positive interior equilibrium ( x ∗ , y ∗ ), where x ∗ = 1 − α + 

α(γ + δ) 
β

, y ∗ = 

β−δ−γ
γ + δ . For α, β , γ > 0, (3) has a positive equilibrium 

E 0 = (1 , 0) . Assume that 0 < γ < β and 0 < α ≤ β
β−γ

, then (3) has 

a positive interior equilibrium ( x ∗ , y ∗ ), where x ∗ = 1 − α + 

αγ
β

, y ∗ = 

β−γ
γ . 

The Jacobian matrix of system (3) at E 0 = (1 , 0) takes the 

form: 

J| E 0 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

1 − 2 x − αy 2 

(x + y ) 2 
− αx 2 

(x + y ) 2 

βy 2 

(x + y ) 2 
−γ + 2 

βx 2 

(x + y ) 2 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

(
−1 −α
0 β − γ

)
. 

Since det(J| E 0 ) > 0 and tr(J| E 0 ) = −1 < 0 , the equilibrium E 0 = 

(1 , 0) becomes a stable-node. 

Lemma 1. Let E 0 be an equilibrium of (3) . Then the following asser- 

tions hold. 

(i) If det(J| E 0 ) < 0 , then E 0 is a saddle of (3) . 

(ii) If det(J| E 0 ) > 0 , tr(J| E 0 ) � = 0 and (tr(J| E 0 )) 2 − 4 det(J| E 0 ) ≥ 0 , 

then E 0 is a node of (3) ; it is stable if tr(J| E 0 ) < 0 and unstable 

if tr(J| E 0 ) > 0 . 

(iii) If det(J| E 0 ) > 0 , tr(J| E 0 ) � = 0 and (t r(J| E 0 )) 2 − 4 det (J| E 0 ) < 0 , 

then E 0 is a focus of (3) ; it is stable if tr(J| E 0 ) < 0 and unstable 

if tr(J| E 0 ) > 0 . 

(iv) det(J| E 0 ) > 0 , tr(J| E 0 ) = 0 , then E 0 is a center, or a focus of 

(3) . 

It is evident that if det(J| E 0 ) > 0 , tr(J| E 0 ) < 0 , then E 0 is locally 

asymptotically stable. 

3. Bifurcation analysis 

In this section, we study the stability and bifurcation of positive 

equilibria. We first discuss the existence of Hopf and Bogdanov–

Takens bifurcations of the system (3) . 

3.1. The Bogdanov–Takens (or double zero) bifurcation analysis 

We first prove the unique positive equilibrium of system (3) is 

a Cusp of codimension 2, then discuss the Bogdanov–Takens bi- 

furcation of this system. If f (x ) = 0 and f f ′ (x ) = 0 simultaneously 
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