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A B S T R A C T

Over the last two decades, there has been significant advancements in the application of geospatial technologies
in agriculture. Improved resolutions (spectral, spatial and temporal) of remotely sensed images, coupled with
more precise on-the-ground systems (yield monitors, geophysical sensors) have allowed farmers to become more
sensitive about the spatial and temporal variations of crop yields occurring in their fields. Previous research has
extensively looked at spatial variability of crop yields at field scale, but studies designed to predict within-field
spatial patterns of yield over a large number of fields as yet been reported. In this paper, we analyzed 571 fields
with multiple years of yield maps at high spatial resolution to understand and predict within-field spatial pat-
terns across eight states in the Midwest US and over corn, soybean, wheat and cotton fields. We examined the
correlation between yield and 4 covariates, three derived from remote sensing imagery (red band spectral re-
flectance, NDVI and plant surface temperature) and the fourth from yield maps from previous years. The results
showed that for spatial patterns that are stable over time the best predictor of the spatial variability is the
historical yield map (previous years’ yield maps), while for zones within the field that are more sensitive to
weather and thus fluctuate from one year to the next the best predictor of the spatial patterns are the within-
season images. The results of this research help quantify the role of historical yield maps and within-season
remote sensing images to predict spatial patterns. The knowledge of spatial patterns within a field is critical not
only to farmers for potential variable rate applications, but also to select homogenous zones within the field to
run crop models with site-specific input to better understand and predict the impact of weather, soil and
landscape characteristics on spatial and temporal patterns of crop yields to enhance resource use efficiency at
field level.

1. Introduction

In order to apply variable rate input within a field (Schepers et al.,
2004), it is essential to understand the drivers of the spatial distribution
of yield at field scale. A number of studies have investigated the de-
terminants of spatial variability of yield at the level of a single field
(Basso et al., 2011; Koshla et al., 2010) however few studies have at-
tempted to compare predictors of yield spatial patterns over a large
number of fields.

Here we investigate factors that predict within-field yield spatial
variability by dividing fields into stable and unstable portions, based on
the yield temporal variability that each point of the field exhibits over
three or more growing seasons (Basso et al., 2007; Blackmore, 2000). In
the stable portions of a field, the main determinants of spatial dis-
tribution of yield are related to soil properties and landscape position.
However, in areas where yield is unstable from year to year, spatial
distribution of yield is the result of the interaction between the soil
characteristics, position in the landscape and weather (i.e. the

performance of an unstable area of the field will have stronger variation
compared to the rest of the field depending on the year’s weather).

In this study, we examined the correlation between yield and 4
covariates, three were derived from remote sensing imagery (red band
spectral reflectance, NDVI and surface temperature) and the fourth
entailed the use of yield maps from previous years. Each of these cov-
ariates is well-correlated to yield for various reasons. The red band
reflects the amount of light that is not absorbed by the plant in the red
portion of the electromagnetic spectrum and is therefore negatively
correlated with the photosynthesis. In a similar fashion, NDVI (Tucker,
1979) represents the normalized difference between the near infrared
(emitted by leaves) and red (absorbed by leaves) and is positively
correlated to plant photosynthetic activity. Surface temperature is a
proxy for plant transpiration and thus, soil water availability and plant
photosynthetic rate.

We investigated the above-mentioned four covariates using a da-
taset that encompasses fields from eight states of the Midwest of the
United States cultivated with maize (Zea mays L.), wheat (Triticum
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spp.L.), soybean (Glycine max, L.) and cotton (Gossypium spp. L).
We investigated the following research questions: 1) In what part of

the growing season is the correlation between crop growth and plant
spectral reflectance the highest in our 571 fields? We hypothesize that
the best correlation for maize occurs in July, as reported by Johnson
(2014) at the county level, because the processes governing the corre-
lation (photosynthesis level) are the same at the two spatial scales (field
and county); 2) Is the correlation between within-season images and
yield stronger than the correlation between past yield maps and yield?
We hypothesized that historical yield maps exhibit a stronger correla-
tion because they are a proxy for the interaction between soil condi-
tions and past weather along with crop phenology, whereas the in-
dividual within-season images reflect the effects of the weather on
growth only at the time of the image (single crop stage).

To test our hypothesis under the most rigorous conditions, we
compared the variable importance of the historical yield against the
post-facto NDVI images (i.e. the NDVI image that showed the best
correlation with the yield at harvest, although clearly in reality it is not
possible to know beforehand which will be the within-season image
that exhibit the best correlation). We further hypothesized that histor-
ical yield is the best predictor only in the stable zones whereas unstable
zones have by definition poor correlation with the yield of previous
years and therefore they can be better predicted using within season
remotely sensed images.

2. Materials and methods

2.1. Yield data

We collected yield maps from 571 fields from 110 farmers, for a
total number of 2009 fields-year maps. In 27% of the fields we had
more than 4 years of yield maps. The fields were in 8 different states of
the Midwest of the United States, as shown in Map 1. The distribution of
the yields collected for each field and the number of yield maps col-
lected for each state in shown in the Table SI 1.

For each harvest point dataset (i.e. the points recorded by the har-
vester monitoring system relative to one year), the median was used to
define the lower (0.1×median) and higher (3×median) boundaries.
All points below or above the boundaries were handled as outliers and
deleted. Points with the same longitude and latitude were dissolved to
avoid duplicates. The average minimum distance between points was
1.3 m with an average standard deviation between fields of 0.6 m and
within field of 0.4m. We applied to each harvest point dataset a
spherical kriging model with a cell size of 2 by 2m, and a fixed radius
with a distance of 20m and a minimum of 12 points to rasterize the
point dataset.

For every field, we calculated the border of polygon representing
the field, and removed the yield maps that covered less than 75% of the
field. We calculated field boundaries first by merging all the georefer-
enced points into a unique dataset and then by creating a polygon
around the points based on an aggregation distance varying depending
on the number of years of harvest available. The aggregation distance
was set to 15m (3 or more years of yield data), 20m (2 years of yield
data) or 30m (1 year of yield data). For each field, we resampled the
yield maps to have all the same spatial extent to allow a pixel wise
analysis using bilinear interpolation. Additionally, we removed the
years for which more than one yield map for the same field was
available because in those years there were two different crops culti-
vated in different sections of the field. Fig. 1 shows the geographical
distribution of the fields.

2.2. Red band from aerial visual images

Visual imagery for 121 fields was collected in the red, green and
blue bands (RGB) by Airscout, a commercial airborne image company
operating in the Midwest US. Of the total number of fields, images were

collected of 93 fields for one year, 25 fields for two years, and one field
for 3 years. We only considered the red band, as this is a proxy of the
light absorbed by plants. Images were taken between the 4th of April
and the 10th of October (Fig. SI 2a) in 2014 (3 fields), 2015 (39 fields)
and 2016 (102 fields). The flights hours were uniformly distributed
between 9 a.m. and 6 p.m. (Fig. SI 2b). The resolution of the red band
images was on average 0.30m (sd 0.05), the resolution varied de-
pending on the flying height of the airplane (Fig. SI 2c). In the few cases
where multiple pictures of a field were taken at interval lower than one
hour, raster images were averaged, under the assumption that either
multiple pictures were taken by mistake or that each picture represents
only a portion of the field. Raster images were resampled (using a bi-
linear interpolation method) and projected to match the resolution and
projection of the yield maps.

2.3. Airborne plant temperature and visual images

Plant surface temperature and visual (RGB) images were taken si-
multaneously from 130 fields, in 9 fields the temperature image was
available whereas the red band image was not available. The resolution
of the temperature images was on average 2.2 m (sd 0.2, Fig. SI 3c). We
resampled the temperature images to match the yield maps resolution,
extent, and projection. This operation was necessary to perform a pixel-
wise analysis of the correlation between the temperature image and
yield image. The resampling method adopted was a bilinear inter-
polation method. As for the images of the red band reflectance, in the
few cases where multiple pictures of the field were taken at a time
distance lower than one hour the raster images were averaged, under
the assumption that either multiple pictures were taken by mistake or
that each picture represents only a portion of the field. We removed
pixels indicating temperature values higher than 50 °C as they may
indicate a measurement error.

2.4. Landsat 8 derived NDVI images

We downloaded all the images available for each field from April 1,
2014–November 1, 2016 using the python package Landsat-util. We
screened all the images to mark as not available (NA) those pixels
whose quality was affected by clouds, points that contained designated
fills and dropped frames using the Landsat 8 Pre-Collection Quality
Assessment. We then removed the images for which more than 25% of
pixels in the field were marked as not available. We calculated the NDVI
for each Landsat scene using the following formula:

=
−

+

NDVI NIR RED
NIR RED

We report the distribution of the number of images available in the
period July-August in the Fig. SI 4, the median of the distribution is 3.
To measure the correlation between yield maps and NDVI images, we
resampled the yield maps to match the resolution of the Landsat images
using the bilinear interpolation method.

2.5. Historical yield

For the fields for which we had yield maps from at least four years,
we calculated a historical yield map using the following algorithm: first,
we normalized each yield map (i.e. centered and scaled to have
mean=0 and sd= 1); second, for each year we calculated the pixel-
wise mean of the previous years’ normalized yield maps. We calculated
the historical yield map only for those years where at least three pre-
vious yield maps were available. For example, if there were yield maps
for 2012, 2013, 2014 and 2015 for a field, the historical map was
calculated only for 2015, whereas if there were yield maps only for
2013, 2014, and 2015, no historical map was calculated for that field.
Conversely, if yield maps for 2012–2016 were available, we calculated
the historical map for both 2015 and 2016. We used only maps from the
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