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a b s t r a c t 

In 1982, Dubois and Prade investigated the relationship between belief function, plausibility function and 

basic probability assignment when the involved universe is finite. In this paper, the similar results on 

their relationships are obtained with a continuous universe. As an important facility to connect possibility 

distribution in continuous universes and discrete probability values, basic probability histogram is defined 

by means of measurement amplitude, which is a notion with both probability and possibility features. A 

theorem about how to calculate a suitable sample size for estimation is proposed based on the researches 

on basic probability histograms. Through the theorem, we can directly calculate the appropriate samples 

size for any population distribution. Even with small samples, a reasonable estimation can be obtained 

with a non-normal distribution. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Many new perspectives applying to dealing with uncertainty is- 

sues have been proposed since Zadeh put forward the notion of 

fuzzy set [1] . Powerful advantages could be seen in the theories 

such as Dempster-Shafer theory [2] and possibility theory [3] which 

are used to solve uncertainty issues and they are regarded as com- 

parable with probability theory.There are two general problems 

that we must face when a fuzzy decision is made by using these 

theories. One is about constructing a fuzzy membership function 

from statistical data, the other is about selecting a suitable sample 

size for estimation. In this paper, we aim to present a finding on an 

effective calculation method to give a suitable sample size for us- 

ing a random sample to estimate the target accurately. Since sam- 

ples are probable while the overall estimation process is plausi- 

ble, the former is essentially a problem on the conversion between 

possibility and probability. The following is a brief introduction to 

the conversion problem and the sample size problem. 

1.1. The conversion between possibility and probability 

The reason why the conversion problem between probability 

and possibility had received much attention in the past is that the 
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transformation is useful in some practical problems, e.g. in con- 

structing a fuzzy membership function from statistical data [4] , 

combining probabilities and possibilities in expert systems [5] and 

reducing complicated complexity [6] . This conversion problem is 

rooted in possibility-probability consistency principle which was 

introduced by Zadeh, in his paper founding possibility theory [3] . 

He pointed out that there is a heuristic connection between possi- 

bilities and probabilities, i.e. a high degree of possibility does not 

imply a high degree of probability, nor does a low degree of proba- 

bility imply a low degree of possibility. However, if an event is im- 

possible, it is bound to be improbable. In 1982, a further study on 

the existing axiomatic theories, Shafer’s belief theory [2] and the 

triangular norm-based approach [7,8] , dealing with large classes of 

fuzzy measures was done by Dubois and Prade [9,10] . Their study 

shows that from both approaches emerge three remarkable fam- 

ilies of fuzzy measures: the probability, possibility and necessity 

measures. They pointed out that the possibility measure is a par- 

ticular case of plausibility functions while necessity measure is a 

particular case of belief functions. And they proved that Shafer’s 

belief and plausibility functions can be represented via a basic 

probability assignment (which is nothing but a random set), and 

also that probability measure, possibility measure and necessity 

measure can be expressed in terms of a density. They suggested 

regarding this feature as a general framework for the combina- 

tion of uncertain information. Afterwards, many researchers, such 

as Wang [11] , Klir [12] , Dubois and Prade [6] , Baruah [13,14] etc., 

have conducted useful research on the conversion problem 
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between probability and possibility. Although there exist many 

viewpoints that are not consistent with each other,it seems very 

reasonable to regard the general framework introduced by Dubois 

and Prade as a guiding principle for studying of the consistency re- 

lationship existing between possibilistic and probabilistic. Another 

important thing to be noted here is that most of consistency prin- 

ciples that can be found in the literature of fuzzy set theory deal 

with the consistency in discrete cases. Continuous cases were dis- 

cussed a bit in a paper of Dubois-Prade-Shandri [6] , which in- 

volved the transformation from possibility measure to probabil- 

ity measure T1 (T 1(π )(x ) : p(x ) = T 1(π )(x ) = 

∑ n 
i =1 

πi −πi +1 | A i | μA i (x ) . 

where π ( x ) is a possibility density function in D; A 1 , ���, A n is a 

finite set of level-cuts corressponding to π1 = 1 > π2 > · · · > πn > 

πn +1 = 0 ; | A i | is the cardinal of set A i ; μA i 
(x ) is the characteristic 

function of A i ) and the transformation from probability measure 

to possibility measure T2 (T 2(p) : π(x ) = π( f (x )) = 

∫ x 
−∞ 

p(y ) dy + ∫ + ∞ 

f (x ) p(y ) dy . where p is a probability density function in D. f is a 

function define as f : [ a, x 0 ] → [ x 0 , b ] by f (x ) = max (y | p(y ) ≥ p(x )) , 

π is the possibility distribution .) But at the same time it was men- 

tioned that these two transformations were not related to each 

other and the converse transformations were shown to be inade- 

quate. In this paper, we show that the framework introduced by 

Dubois and Prade can be extended to continuous universes and 

has almost the same expression and relationship as in discrete uni- 

verses. 

1.2. The sample size for estimation 

Deducing the features of the population from the sample data 

is one basic task of statistics. Sample size influences the credibil- 

ity of the estimation results directly. Modern Statistics indicates 

that bigger sample size brings the higher credibility of the esti- 

mation results [15–17] . However, it usually costs a large quantity 

of manpower and material resources to obtain large samples. As a 

result, the study of appropriate sample size not only ensures the 

estimation results to meet the needs of the following work but 

also consider the cost in the process of collecting sample data. 

Since the establishment of fuzzy set, the authors have not found 

literatures that use fuzzy theory to study the sample size prob- 

lem in fuzzy decision making. Most of the literatures about cal- 

culating sample size employ chebyshev’s theorem or hypothesis 

test theory of statistics [18,19] . In statistics, the sample population 

of hypothesis test is required to be subject to the normal distri- 

bution [20] . The non-normal distribution usually need to be nor- 

malized by the central limit theorem. But the central limit the- 

orem is established with the condition that the sample size n is 

sufficiently large [21,22] . The smaller sample size will lead to the 

failure of getting an ideal statistic conclusion [23,24] . In this pa- 

per, based on the a measurement experiment, a theorem about 

how to calculate a suitable sample size for estimation is proposed. 

Through the theorem, we can directly calculate the appropriate 

samples size for any population distribution. Even with small sam- 

ples, a reasonable estimation can be obtained with a non-normal 

distribution. 

The rest of the paper has been organized as follows: 

Section 2 recalls main conclusions of the framework introduced 

by Dubois and Prade. Section 3 extends the results of Dubois and 

Prade 1982 to continuous universes by two important concepts 

which are defined by the authors: measurement amplitude and ba- 

sic probability histogram. Section 4 introduces an approach to con- 

struct the credibility distribution of estimation. Section 5 provides 

a theorem on how to calculate the appropriate sample size for es- 

timation. Finally, Section 6 is our conclusions. 

2. The connection of plausibility function, belief function and 

basic probability assignment in the discrete universes 

On finite universe X which is the basis for the study of Dubois 

and Prade, a belief function is a set function Bel from ℘( X ) (power 

set of X ) to [0,1] such that 1) Bel (φ) = 0 ; 2) Bel (X ) = 1 ; 3) ∀ n ∈ 

N, ∀ A i ⊂ X, i = 1 , · · · , n, 

Bel 

( 

n ⋃ 

i =1 

A i 

) 

≥
n ∑ 

k =1 

[ 

(−1) i +1 
∑ 

1 ≤i 1 < ···<i k ≤n 

Bel 

(
A i 1 

⋂ 

· · ·
⋂ 

A i k 

)] 

. 

(2.1) 

When n = 2, it yields the following important inequalities 

∀ A, B ⊂ X, Bel 

(
A 

⋃ 

B 

)
≥ Bel (A ) + Bel (B ) − Bel 

(
A 

⋂ 

B 

)
. (2.2) 

∀ A, B ⊂ X, Bel 

(
A 

⋂ 

B 

)
≥ max ( 0 , Bel (A ) + Bel (B ) − 1 ) . (2.3) 

∀ A, B ⊂ X, Bel 

(
A 

⋂ 

B 

)
≤ min ( Bel (A ) , Bel (B ) ) . (2.4) 

∀ A ⊂ X, Bel (A ) + Bel ( ̄A ) ≤ 1 , (2.5) 

where Ā is the complement of A . 

The set function Pl named plausibility function dual to belief 

function is defined by 

∀ A ⊂ X, Pl (A ) = 1 − Bel ( ̄A ) . (2.6) 

There are also four inequalities dual to (2.2) through (2.5) 

∀ A, B ⊂ X, Pl 

(
A 

⋂ 

B 

)
≤ Pl (A ) + Pl (B ) − Pl 

(
A 

⋃ 

B 

)
. (2.7) 

∀ A, B ⊂ X, Pl 

(
A 

⋃ 

B 

)
≤ min ( 1 , Pl (A ) + Pl (B ) ) . (2.8) 

∀ A, B ⊂ X, Pl 

(
A 

⋃ 

B 

)
≥ max ( Pl (A ) , Pl (B ) ) . (2.9) 

∀ A ⊂ X, Pl (A ) + Pl ( ̄A ) ≥ 1 . (2.10) 

The following inequality holds 

∀ A ⊂ X, Pl (A ) ≥ Bel (A ) . (2.11) 

The basic probability assignment is a mapping m from ℘( X ) to [0, 1] 

such that 1) m (φ) = 0 ; 2) 
∑ 

A ⊂X m (A ) = 1 . Through a basic proba- 

bility assignment, the belief function and the plausibility function 

can be respectively expressed as 

∀ A ⊂ X, Bel (A ) = 

∑ 

B ⊂A 

m (B ) . (2.12) 

∀ A ⊂ X, Pl (A ) = 

∑ 

B 
⋂ 

A 
 = φ
m (B ) . (2.13) 

It is shown that m can be obtained from Bel by 

∀ A ⊂ X, m (A ) = 

∑ 

B ⊂A 

(−1) | A −B | Bel (B ) , (2.14) 

where | A | denotes the cardinality of the set A . 
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