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a b s t r a c t

This paper conducts sensitivity analysis and sensitivity-based design for linear filter alarm monitoring systems.
Based on a derivative-based local sensitivity measure, models are proposed to assess the sensitivity of the
system detection errors to changes in the trip point and to uncertainties in the collected data. Then, analytical
expressions are derived to quantitatively evaluate the sensitivity of a general linear alarm filter with unknown
data distributions. Subsequently, a new sensitivity-based linear filter design method is formulated to minimize a
weighted sum of the detection errors subject to upper bounds on the system sensitivities. Extensive simulations
with both Gaussian and industrial data are conducted to verify the analytical results and to show trade-offs
between the detection errors and sensitivities of linear filter alarm system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

With increasingly high requirements on safety, reliability and ef-
ficiency in industrial plants, the design of effective alarm monitoring
systems has become a heated topic during the last decade. Generally
speaking, to improve the accuracy of alarm monitoring systems is to
reduce the two types of errors: the false alarm rate (FAR) and the miss
alarm rate (MAR) (Adnan, Izadi, & Chen, 2011). There are two main
research directions related with this error reduction task. The first one is
the design of alarm triggering mechanism, including delay-timers (Zang,
Yang, & Huang, 2015), dead-bands (Naghoosi, Izadi, & Chen, 2011) and
filters (Cheng, Izadi, & Chen, 2011). The second direction is to analyze
the connections among alarms to eliminate sequential alarms and
ascertain rationalization suggestions, using correlation analysis (Yang,
Shah, Xiao, & Chen, 2012), similarity analysis (Ahmed, Izadi, Chen, Joe,
& Burton, 2013) and sequence pattern analysis (Lai & Chen, 2015).

Due to the heavy computation burden and implementation cost
in the second direction above, research topics on improved alarm
triggering mechanism, especially the advanced filter design with a
level-crossing alarm generation mechanism, are still among the most
promising ones to reduce nuisance and false alarms. Moreover, linear
alarm filters are of particular interest since they are not only easy
to implement but also effective in performance enhancement. In the
literature, firstly, moving average (MA) filters and moving variance
filters were designed for known Gaussian distributions in Izadi, Shah,
Shook, Kondaveeti, and Chen (2009). Later, a general optimal design
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framework for linear and quadratic alarm filters (Cheng et al., 2011)
was proposed to tackle data with other distributions. Based on the design
framework in Cheng et al. (2011), MA filters were analytically proved to
be optimal among linear filters under log-concave and symmetric data
distributions (Cheng, Izadi, & Chen, 2013).

The majority of existing results for linear alarm filters still rely
on the assumption that the trip point and the probability density
functions (PDFs) of data under normal and abnormal conditions are
known precisely. However, in reality, uncertainties and changes are
inevitable in both the trip point and the PDF estimation. Specifically,
computational errors exist in the trip point setting. For example, in
the linear filter design (Cheng et al., 2013), the solution is found
with iterative numerical methods (Cheng et al., 2011), which offer an
approximate solution instead of the exactly optimal one due to limited
precisions and limited processing power. As for the uncertainties in the
PDFs, strictly speaking, the exact PDFs of process signals are unknown.
The PDFs are actually estimated based on the collected data and pre-
assumed probability models. But measurement noise in data collection
is ubiquitous. Uncertainties in both the trip point and the PDFs will
propagate into filter design and alarm performance evaluation. Thus,
to understand how uncertainties affect the performance of an alarm
system, it is important to quantitatively measure the sensitivity of the
system behavior with respect to the trip point change and the PDF
variations.
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In the literature, sensitivity measures can be generally classified
into two types: local sensitivity measures and global sensitivity mea-
sures (Borgonovo & Plischke, 2016). Global sensitivity measures are
usually obtained using statistical properties (such as variance ratio Bor-
gonovo & Plischke, 2016) based on assigned known density distribu-
tions (Saltelli, Ratto, Andres, Campolongo, Cariboni et al., 2008). On
the other hand, pre-given PDFs are unnecessary for local sensitivity
measures (Borgonovo & Plischke, 2016). Besides, the two types of
measures have different applications. Local sensitivity measures are
widely used in evaluating output variations due to slight changes in
inputs, while global ones deal with input variations over their entire
ranges of interest. With the help of proper sensitivity measures, a
sensitivity-based design problem can be formulated to meet diverse
engineering needs. For example, in mechanical engineering, derivative-
based local sensitivity measures are used to optimize the feasibility of
a welded beam in Gunawan and Azarm (2004). In control engineering,
the sensitivity of a control system to disturbances is usually reflected
by a global sensitivity measure namely the sensitivity transfer function.
For example, the weighted ∞-norm of the sensitivity function was
minimized to achieve optimal robust feedback controller in Zames and
Francis (1983), and the 2-norm of the sensitivity function quantified
the robustness of the assigned pole to parameter perturbations in a
dynamical system in Abdelaziz (2015).

In this work, a local sensitivity measure is chosen instead of global
ones. Because results obtained with global sensitivity measures highly
rely on pre-assumed and limited types of distribution models; without
known distributions, the calculation of global sensitivity measures is
mathematically troublesome, if not impossible. However, distributions
of the collected data are usually unknown and have relatively large
diversity for different processes. Moreover, among existing local sen-
sitivity measures, the derivative-based elasticity measure (Borgonovo
& Plischke, 2016; Karnavas, Sanchez, & Bahill, 1993) is adopted and
customized for linear alarm filters. Specifically, the inputs of the elas-
ticity are chosen as the trip point variation and the PDF offsets caused
by noise in the collected data. And the Kullback–Leibler divergence
(KLD), a popular distance measure between probability distributions in
information theory and statistics (Kullback & Leibler, 1951), is applied
to measure the PDF offsets between the ideal noise-free data and the
collected noisy data. The MAR and FAR are chosen as the outputs.
Without any knowledge on the collected data distribution, sensitivities
of the detection errors to the trip point and KLD are calculated based on
the Gaussian kernel estimation.

In addition, based on derived sensitivity expressions, a new linear
filter design method is proposed, which takes both detection errors and
sensitivity measures into account. The design procedure is modeled
as a constrained minimization problem, where the objective is to
minimize the weighted summation of detection errors within sensitivity
constraints. A grid search method is used to locate the solution. Sim-
ulations on the Gaussian and industrial data are conducted to verify
the effectiveness of the proposed sensitivity analysis and sensitivity-
based design. Also, simulation results provide insightful observations
in detection errors and the sensitivity of linear alarm filters.

The rest of the paper is organized as follows. Backgrounds on
alarm monitoring with linear filters and sensitivity analysis models are
illustrated in Section 2. Then in Section 3, the proposed sensitivity
models and the detailed calculation procedures are presented, together
with the sensitivity-based linear filter design. In Section 4, simulation
results on data sets from Gaussian distribution and from an industrial
plant are presented and studied. Section 5 concludes this paper.

2. Linear alarm filters and sensitivity models

2.1. Linear alarm filters

Let 𝒙 = [𝑥(1), 𝑥(2),…] be a vector of discrete-time signals. A filter
is essentially an operator that processes 𝒙 to produce another vector

discrete-time signals 𝒚 = [𝑦(1), 𝑦(2),…], written as 𝒚 = 𝐹 (𝒙). In the
alarm monitoring area, linear filters show significant advantages over
non-linear filters (Cheng et al., 2011) in easy application and simple
computation. Therefore, linear filters are considered in this work, with
the following form:

𝑦(𝑘) =
𝑁−1
∑

𝑖=0
𝜃𝑖𝑥(𝑘 − 𝑖), (1)

where 𝑁 is the length of the linear filter and 𝜃𝑖’s are the filter co-
efficients. Without loss of generality, the summation of all the filter
coefficients is set to be 1, i.e., ∑𝑁−1

𝑖=0 𝜃𝑖 = 1. With the typical level crossing
alarm generation mechanism (Izadi et al., 2009), the filtered signal 𝑦(𝑘)
is compared with the trip point 𝑦𝑡𝑝 to trigger an alarm, i.e., an alarm
will be raised if 𝑦(𝑘) > 𝑦𝑡𝑝.

In this work, collected data under the normal and abnormal
modes are denoted as 𝒙𝑛 = [𝑎1, 𝑎2,… , 𝑎𝑙𝑛 ] with length 𝑙𝑛 and 𝒙𝑎𝑏 =
[𝑏1, 𝑏2,… , 𝑏𝑙𝑎𝑏 ] with length 𝑙𝑎𝑏 respectively. It is assumed that 𝑎𝑖’s are
independent and identically distributed (i.i.d.), 𝑏𝑗 ’s are i.i.d., and 𝑎𝑖’s
are independent to 𝑏𝑗 ’s. Let 𝑓𝑋,𝑛(⋅) and 𝑓𝑋,𝑎𝑏(⋅) be the PDFs of 𝑎𝑖 and
𝑏𝑗 respectively. Also, let 𝒚𝑛 = 𝐹 (𝒙𝑛) and 𝒚𝑎𝑏 = 𝐹 (𝒙𝑎𝑏) denote the
filtered signals, and 𝑓𝑌 ,𝑛(⋅) and 𝑓𝑌 ,𝑎𝑏(⋅) represent the common PDF of
each element in 𝒚𝑛 and 𝒚𝑎𝑏 respectively.

The FAR (MAR) of the alarm system is defined as the probability
that an alarm is raised (missed) when the system is under the normal
(abnormal) mode. The goal in conventional linear filter design is to find
the optimal combination of filter coefficients and the trip point with the
lowest weighted sum of FAR and MAR. With the trip point 𝑦𝑡𝑝, the cost
function can be calculated as:

Jconv = 𝑐1FAR + 𝑐2MAR

= 𝑐1 ∫

+∞

𝑦𝑡𝑝
𝑓𝑌 ,𝑛(𝑦)d𝑦 + 𝑐2 ∫

𝑦𝑡𝑝

−∞
𝑓𝑌 ,𝑎𝑏(𝑦)d𝑦, (2)

where 𝑐1 and 𝑐2 are positive weights on the FAR and MAR. From (2),
it is obvious that the FAR, the MAR and the cost function can be
significantly affected by the accuracy of the data PDFs and the trip
point. Uncertainties in the estimated PDFs and the trip point will lead
to performance change. Thus, there exists a strong need to quantify the
sensitivity to these changes.

2.2. Sensitivity definition and properties

In this work, the derivative-based elasticity, a local sensitivity mea-
sure, is adopted because it eliminates unit differences of input and
output variations (Borgonovo & Apostolakis, 2001). More rationale
for this measure can be found in Borgonovo and Plischke (2016). The
measure is defined as:

𝑆𝐼𝑂 = lim
𝛥𝐼→0

𝛥𝑂
𝑂

/

𝛥𝐼
𝐼

= d𝑂
d𝐼

𝐼
𝑂
, (3)

where 𝑂 stands for the output of the sensitivity model and 𝐼 represents
the input with uncertainties. The ratio 𝐼∕𝑂 is used to scale the changes
in the input and output over their current values to obtain a normalized
dimensionless value. 𝑆𝐼𝑂 is naturally a sensitivity measure of 𝑂 to 𝐼
representing how much the output 𝑂 changes with the input 𝐼 .

To complete the sensitivity modeling, it is necessary to specify inputs
and outputs that are not only relevant but also capable of representing
practical industrial needs. According to Borgonovo and Plischke (2016),
model outputs should be variables of most interests to the decision
maker. So the performance indices, the FAR and MAR, are chosen as
outputs for sensitivity analysis. As for the inputs, once the filter design
is completed, candidates are the trip point and the estimated PDFs.

The sensitivity of the detection error over the trip point is straight-
forward to model by using the definition in (3):
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