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Sensitivity analysis methods are important tools for research and design with simulations. 
Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent 
fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable 
to compute useful gradient information for long-time-averaged quantities in chaotic 
dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute 
useful gradient information for a number of chaotic systems, including simulations of 
chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient 
information comes at a very high computational cost. This paper presents multiple 
shooting shadowing (MSS), a more computationally efficient shadowing approach than 
the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown 
that MSS can have lower memory usage and run time than LSS.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Computational methods for sensitivity analysis are invaluable tools for research and design in many engineering and 
scientific fields. These methods compute derivatives of outputs with respect to inputs in computer simulations. In applica-
tions with large amounts of parameters and only a few important outputs, adjoint-based sensitivity analysis is especially 
efficient [1]. In aircraft design, for example, the number of geometric parameters that define the outer mold line is typ-
ically very large, but engineers may only be interested in a few outputs, such as the lift-to-drag ratio. As a result, the 
adjoint method of sensitivity analysis has proven to be very successful for aircraft design with gradient-based optimization 
[2–4]. The adjoint method has also been an essential tool for adaptive grid methods for solving partial differential equations 
(PDE’s) [5], error estimation [6], and flow control problems [7]. Finally, some techniques for uncertainty quantification can 
benefit immensely from sensitivity information [8,9].

Unfortunately, conventional sensitivity analysis methods, including the adjoint method, can break down when applied 
to chaotic systems. This occurs for sensitivities of long-time-averaged quantities of interest to design inputs. In this context 
“long-time” refers to time averaging horizons much larger than the physical time scales associated with the chaotic system 
being considered. This is problematic, as many key scientific and engineering quantities of interest in chaotic systems are 
long-time-averaged quantities, such as the time-averaged lift or drag coefficient of a flight vehicle in a high-lift configuration 
or the average heat transfer to a turbine blade.
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To carry out efficient design and analysis of chaotic systems and fluid flows, a new sensitivity analysis method is needed. 
One promising new approach is Least Squares Shadowing (LSS) [10–13]. The most common implementation of LSS in the 
literature is called transcription LSS. Transcription LSS involves solving a globally coupled space-time problem, which can be 
computationally intensive [10]. The study of LSS for chaotic vortex shedding by Blonigan et al. [14] shows that transcription 
LSS is very costly in memory usage and operation count for a relatively small simulation. Similar issues with computational 
cost were encountered in a study of transcription LSS for a direct numerical simulation (DNS) of homogeneous isotropic 
turbulence [15].

This paper presents an alternative way to pose the minimization statement to compute the shadowing direction or the 
adjoint shadowing direction. This formulation, multiple shooting shadowing (MSS), addresses the high computational cost 
of LSS. It is shown that MSS can reduce the memory requirements and the run time required to compute sensitivities of 
chaotic systems, making LSS sensitivity analysis more tractable for large chaotic dynamical systems such as turbulent fluid 
flow simulations. The convergence properties of MSS are presented in great detail, along with some approaches to control 
the convergence rate of MSS.

This paper is organized as follows: section 2 discusses how conventional sensitivity analysis approaches break down for 
chaotic systems and the past work done to avoid this break down. Section 3 provides an overview of the formulation of 
transcription LSS. Section 4 introduces the MSS minimization statement and section 5 discusses how MSS can be imple-
mented. Next, section 6 shows MSS results for a chaotic dynamical system and a chaotic partial differential equation (PDE). 
Section 7 discusses the convergence properties of MSS. Finally, section 8 summarizes this thesis and discusses some future 
research directions.

2. Sensitivity analysis of a chaotic dynamical system

The first question to be asked is if sensitivities are in fact well defined for chaotic systems. It is believed that many, but 
not every, chaotic system has differentiable time averaged quantities J . Specifically, chaotic systems classified as uniformly 
hyperbolic or quasi-hyperbolic have differentiable time averaged quantities, but non-hyperbolic systems do not. These classes 
are discussed in greater detail below.

A uniformly hyperbolic attractor is a strange attractor with a tangent space that can be decomposed into stable, neutrally 
stable, and unstable subspaces at every point in phase space [16]. In other words, the Lyapunov covariant vectors make up 
a basis for phase space at all points on an attractor. Ruelle’s linear response theorem states that hyperbolic attractors 
have mean quantities that respond differentiably to small perturbations to their parameters [17]. Therefore, sensitivities are 
well defined for chaotic systems with hyperbolic attractors. A well studied example of a hyperbolic attractor is the Plykin 
attractor [18]. The equations governing the Plykin attractor were designed to have hyperbolic properties, which are rare in 
practice.

Although uniformly hyperbolic attractors are rare, many important properties of hyperbolic systems, including Ruelle’s 
linear response theorem, can also be shown to hold for the far more common non-uniformly hyperbolic or quasi-hyperbolic 
attractors [17,19,20]. One example of a quasi-hyperbolic attractor is the Lorenz attractor [21]. At the origin of phase space, 
the Lyapunov covariant vectors for the positive and negative exponent are parallel, so hyperbolicity does not apply. However, 
this point is an unstable saddle point and almost all phase space trajectories do not pass through it. Because of this the 
Lorenz attractor appears to have the properties of a hyperbolic attractor, most importantly differentiable mean quantities 
[22,10].

Other chaotic dynamical systems have non-hyperbolic attractors. In these non-hyperbolic systems the time averaged 
quantities are usually not differentiable or even continuous as the parameters vary. In fact, long-time-averages for non-
hyperbolic systems may have nontrivial dependence on the initial condition (i.e. the system is not ergodic), which leads to 
time averaged quantities that are not well-defined.

Fortunately, Gallavotti and Cohen’s chaotic hypothesis conjectures that larger systems behave more like hyperbolic 
systems than non-hyperbolic systems [23,24]. That is, larger systems should have differentiable infinite time-averaged 
quantities. Additionally, a study by Albers and Sprott found that larger chaotic systems tend to have smoothly varying 
topology changes in the attractor as system parameters are varying [25]. Long-time-averaged quantities do not necessarily 
vary smoothly across sudden topology changes like bifurcations. Therefore, the chaotic hypothesis and the work by Albers 
and Sprott suggest there are well defined sensitivities to be computed for a large range of chaotic systems, especially if 
these systems have a large number of degrees of freedom (DoF). This is encouraging considering the large numbers of DoF’s 
in simulations such as those of chaotic and turbulent fluid flows.

Additionally, there is some evidence that the chaotic hypothesis applies to simulations of turbulent fluid flows. Grid 
convergence studies have been done in many cases to ensure that the discretization of the governing equations is sufficiently 
detailed. For example, Kim et al. used a direct numerical simulation (DNS) to compute turbulent statistics such as the 
mean velocity profile of a turbulent channel flow with a coarse and a fine spatial discretization [26] to check if their 
fine discretization was fine enough. The statistics were the same for the coarse and fine discretizations, which shows that 
long-time-averaged quantities of the DNS respond smoothly to perturbations in the spatial discretization, as predicted by 
the chaotic hypothesis. Similar results of grid convergence studies for other DNS and Large Eddy Simulation (LES) results 
[27,28] also support the chaotic hypothesis, making it very likely that sensitivities of long-time-averaged quantities are well 
defined for high-fidelity turbulent flow simulations.
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