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A B S T R A C T

Thermal-Hydraulic (TH) codes are used to simulate the response of nuclear safety systems under transient and
accident conditions. The outcomes of the simulations are used to verify the safety margins required for safe
operation and make decisions on how to maintain them.

In this work, a novel Expert System (ES) based on Regional Sensitivity Analysis (RSA) is developed to guide a
system undergoing an accident scenario towards the safest conditions in the optimal number of operation. The
ES proceeds by firstly identifying the (uncertain) system controllable variables (i.e., control rods position, feed-
water flow rate, void fraction inside the steam generator, etc.) that most affect the system response by RSA; then,
the limit-state function is calibrated on a dataset of outcomes of TH code runs and the system failure boundary
(i.e., the limit surface) is defined on the set of (uncertain) TH input variables.

Application of the ES is firstly shown with respect to an analytical case study that artificially simulates the
response of a NPP to an accident scenario and, then, to a practical case study concerning the response of the
pressurizer of a Pressurized Water Reactor (PWR).

1. Introduction

Safety remains a priority for Nuclear Power Plants (NPPs) design
and operation, as the release of radioactive material can result in cat-
astrophic consequences in terms of casualties, environmental pollution
and financial losses (Hsieh et al., 2012). For the safety of NPPs, acci-
dent-preventive design and operation, and effective consequence miti-
gation plans are developed (Ma and Jiang, 2011). In practice, Emer-
gency Operating Procedures (EOPs) are defined to provide the technical
basis for suitable operator response to Design Basis Accidents (DBAs)
and, nowadays also, Beyond Design Basis Accidents (BDBAs) (IAEA,
2006).

Fault Detection and Diagnosis (FDD) methods have been developed
for detecting different types of faults and supervising the plant behavior
for accident prevention (Ma and Jiang, 2011; Park et al., 2015; IAEA,
2000; IAEA, 2004; IAEA, 2005). Upon localization and isolation, under
certain abnormal conditions, manual actions are conducted by the plant
operators for restoring normal operating conditions (Hsieh et al., 2012;
Park et al., 2015). For this, Abnormal Operating Procedures (AOPs) are
provided, where the sequence of actions to undertake are given for
different Initiating Events (IEs).

Two practical issues are:

i. it is difficult to ensure sufficient coverage of all possible IEs through
AOPs, as they are developed based on historical data and there may
exist significant IEs that have not yet been experienced (Park et al.,
2015);

ii. human errors may occur during abnormal situations and incorrect
AOPs may, then, be followed (Hsieh et al., 2012).

In abnormal situations, time is critical, and the amount of in-
formation and data to be examined is large. Decision Support Systems
(DSSs) can aid the operators and reduce the possibility of errors (Ma
and Jiang, 2011; Hsieh et al., 2012; Park et al., 2015). Examples of DSSs
are: the Alarm and Diagnosis-Integrated Operator Support (ADIOS)
system that attempts to avoid that too many alarms influence the op-
erators judgement in a wrong way (Kim et al., 2001); the Hidden
Markov Model (HMM) for recognizing accidents in NPPs, proposed in
(Kwon et al., 1999); the Fault Diagnosis Advisory System (FDAS), based
on dynamic neural networks (Lee et al., 2007); the Dynamic System
Doctor (DSD), a system-independent interactive software for on-line
state/parameter estimation in dynamic system (Aldemir et al., 2001);
the Analysis of Dynamic Accident Progression Trees (ADAPT)
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methodology (Hakobyan et al., 2008); the unsupervised clustering
technique for NPP components fault diagnosis, based on Haar Wavelet
Transform (HWT) and Fuzzy C-Means (FCM) algorithm, in (Baraldi
et al., 2013); the hybrid approach for balancing false and missed
alarms, based on Correlation Analysis (CA), Genetic Algorithms (GAs)
and Sequential Probability Ratio Tests (SPRTs) in (Di Maio et al., 2013);
the non-parametric decision strategy in (Al-Dahidi et al., 2014) to de-
tect whether NPP components are in abnormal conditions, using Pre-
diction Intervals (PIs) and Auto-Associative Kernel Regression (AAKR)
(Hines and Uhrig, 1998). However, there is no guarantee of improve-
ment in the operators’ performance and sometimes the result could be
the increase of operator workload, with negative implications on per-
formance (Yoshikawa, 2005; Kim et al., 2007; Hsieh et al., 2012).In this
paper, we propose an Expert System (ES) (McBride and O’Leary, 1993;
Ikram et al., 2015) for operator aid, based on the system response
outcomes obtained from a Thermal-Hydraulic (TH) code and Regional
Sensitivity Analysis (Wei et al., 2014). The TH code reproduces the
system physical behavior according to a mathematical model m that
receives an input vector R∈x n (comprised of n input variables) and
generates the system response vector =y m x( ), containing (at least)
one safety parameter y. The input variables set Rn can be partitioned
into two subsets: one with controllable variables (Rq), i.e. the levers
under control of the plant operator, which can be manipulated to in-
crease plant safety (e.g., reactor control rods position, rate of feed-water
flow through the plant primary loops, accumulator water temperature
and pressure, repair times, etc.), and the other one with non-controllable
variables (R −n q) (Di Maio et al., 2016). In practice, the inputs x are
uncertain (Apostolakis, 1990; Helton et al., 1996; Oberkampf et al.,
2004).

With reference to scenario EF , for which the response of interest Y
must be lower than a threshold γy (imposed by regulation), the limit-
state function G is defined as (Bourinet et al., 2011):

= −G X Y X γ( ) ( ) y (1)

The input space can be split into a failure domain = >F X G X{ : ( ) 0}
and a safe domain = <S X G X{ : ( ) 0}. The system failure boundary
(limit surface) ∂ = =F X G X{ : ( ) 0}, which separates S from F , can be
projected onto an input controllable subset (Rq) (Di Maio et al., 2016),
which contains the controllable variables …X X X, , , q1 2 that can be varied to
increase the system safety margin −γ Y X( )y (Zio et al., 2010).

While the system is operating in its nominal state xe (usually as-
sumed equal to the expected values E X[ ] of the input variables X ), the
safety parameter =y m x( )e e falls well below the safety threshold γy,
providing a margin of safety with respect to uncertainties in the model
(Zio and Di Maio, 2008). In abnormal conditions, the safety margin may
decrease and this needs to be kept under control in order to avoid di-
verging to catastrophic accidents.

An additional difficulty in the problem is due to the fact that any
generic controllable input variable Xj, = …j q1,2, , , can be affected by
epistemic and/or aleatory uncertainty. In this paper, this uncertainty is
modeled by considering that when Xj is set equal to ̂xj, the input
variable actually ranges between −̂x xΔj j and ̂ +x xΔj j according to the
modified Probability Density Function (PDF):
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Coherently, the system (uncertain) initial state is:
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In this paper, we present the development of an Expert System (ES)
for maximizing the safety margin by exploiting the results of a Regional
Sensitivity Analysis (RSA) to guide the search for the range (or state of
the system X ) closest to X0, where G XE[ ( )] is the smallest.

In detail, the ES proposed in this paper is based on the Revised Ratio
Functions (RRFs) (Wei et al., 2014)) that measure the impact on the
mean (Revised Mean Ratio Function, HM) and variance (Revised Var-
iance Ratio Function, HV ) of the model output distribution due to the
reduction in the range of variability of an individual input. For our
purposes, the effect on the variance is of particular interest and it is here
exploited to find which input controllable variable allows obtaining the
largest decrease in G (i.e., the largest increase in the expected safety
margin) when the system is in its current abnormal state X .Assuming
that the system is operating at X and that range ̂ ̂− +x x x x[ Δ , Δ ]j j j j ,

= …j q1,2, , , is reduced to ̂xj, the expected value (E) and variance (Var)
of G are, respectively:
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The original RSA technique defines HVj of input Xj, = …j q1,2, , , as
the ratio between the residual variance ̂Var G x[ | ]j with respect to the
residual mean ̂G xE[ | ]j , and the full variance Var G[ ] (Wei et al., 2014):
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As Eq. (7) shows, HVj indicates the actual reduction of the model output
variance due to the restriction of the range of Xj. The larger HVj is, the
more function G varies (i.e., decreases or increases) for a perturbation
of the other inputs Xφ ( ≠φ j). Therefore, we define the revised ∗HV j as
the ratio between the variance of G, computed over the range

̂ ̂− +x x x x[ Δ , Δ ]j j j j , = …j q1,2, , , and the reduced range ( ̂xφ) of each of the
other inputs X ,φ = …φ q1,2, , , ≠φ j, and the full variance Var G[ ]. It is
clear that the larger ∗HV j is, the more function G varies and, thus, a
larger increase in the system safety margins can be achieved through a
perturbation of the j-th input.

Through the approach described, we aim at providing the plant op-
erator with an effective and unequivocal AOP to keep the safety margins
and avoid system failure, giving clear indications of which controllable
variables to modify and by how much, when an IE has occurred.

The rest of the paper is organized as follows. Section 2 illustrates the
proposed approach. Section 3 shows an application of the approach to
an analytical case study that artificially simulates the response of a NPP
to an accident scenario. Section 4 contains the application of the ap-
proach to the pressurizer of a Pressurized Water Reactor (PWR). Con-
clusions are given in Section 5.
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