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a b s t r a c t 

The presence of uncertainties is inevitable in engineering design and analysis, where failure in understanding 

their effects might lead to the structural or functional failure of the systems. The role of global sensitivity analysis 

in this aspect is to quantify and rank the effects of input random variables and their combinations to the variance 

of the random output. In problems where the use of expensive computer simulations is required, metamodels 

are widely used to speed up the process of global sensitivity analysis. In this paper, a multi-fidelity framework 

for global sensitivity analysis using polynomial chaos expansion (PCE) is presented. The goal is to accelerate 

the computation of Sobol sensitivity indices when the deterministic simulation is expensive and simulations with 

multiple levels of fidelity are available. This is especially useful in cases where a partial differential equation solver 

computer code is utilized to solve engineering problems. The multi-fidelity PCE is constructed by combining the 

low-fidelity and correction PCE. Following this step, the Sobol indices are computed using this combined PCE. 

The PCE coefficients for both low-fidelity and correction PCE are computed with spectral projection technique 

and sparse grid integration. In order to demonstrate the capability of the proposed method for sensitivity analysis, 

several simulations are conducted. On the aerodynamic example, the multi-fidelity approach is able to obtain an 

accurate value of Sobol indices with 36.66% computational cost compared to the standard single-fidelity PCE for 

a nearly similar accuracy. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Computational methods are widely deployed to predict the behavior 

and to compute the outputs of interest (e.g., stress distribution or force) 

of physical or engineering systems. In engineering design and analysis, 

computational partial differential equation (PDE) solvers are routinely 

employed to aid and enhance such processes. However, due to the exis- 

tence of uncertainties in the system, deterministic analysis might result 

in a failure to understand the true probabilistic nature of the system. An 

example of this is in the field of aerospace engineering, where manufac- 

turing error and environmental uncertainties such as gust, turbulence, 

and change in design conditions perturb the nominal condition of the 

aircraft. Understanding the effect of the uncertainties on the system is 

then a vital task in many engineering and scientific problems. Depend- 

ing on the nature of the uncertainties, they can be categorized as either 

aleatory or epistemic uncertainties. While aleatoric uncertainties are ir- 

reducible and inherent to the system, epistemic uncertainties are caused 

by our lack of knowledge of the system being investigated. Aleatoric 

uncertainties can be conveniently expressed by probability theory using 

specific measures such as statistical moments. 
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Sensitivity analysis (SA) in probabilistic modeling plays an impor- 

tant role in understanding the impact of input random variables and 

their combinations to the model output. By performing SA, the contri- 

bution of the input random variables to the model output can be ranked, 

thus giving the analysts information of which variables are the most and 

least responsible. This is very useful in uncertainty quantification (UQ), 

where the dimensionality of the random variable can be high and it is 

desired to reduce the complexity beforehand. Moreover, sensitivity in- 

formation can provide important knowledge about the physics of the 

system being investigated. In engineering analysis, numerical evalua- 

tion of PDE is often required in order to obtain necessary information 

for SA. In the field of fluid and solid mechanics, the model responses are 

typically evaluated using computational fluid dynamics (CFD) or finite 

element methods (FEM), respectively. 

Based on the range of the domain to be analyzed, SA is commonly 

classified into two groups [1] : 

• local sensitivity analysis , which studies the local impact of the input 

parameters on the model output and typically provides the partial 

derivatives of the output to the input parameters. 
• global sensitivity analysis , which studies the uncertainties in the out- 

put due to changes of the input parameters over the entire domain. 
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Based on how it exploits the model response, SA can be further cat- 

egorized into [1] : 

• regression-based methods , which perform linear regression to the re- 

lationship between the model input and output. These methods are 

limited to cases with a linear or almost linear relationship but are 

inadequate in cases with highly non-linear relationship. 
• variance-based methods , which decompose the variance of the output 

into the sum of contributions of each input variables and their com- 

bination. In statistic literature, variance based methods are widely 

known as ANOVA (ANalysis Of VAriance) [2] 

In this paper, we have interest in global SA using variance-based 

methods since our main focus is on UQ, although the methodology itself 

can be used for other applications such as optimization. More specifi- 

cally, this paper focuses on Sobol sensitivity analysis method [3] . 

Monte Carlo simulation (MCS) is the most conventional method to 

perform SA [3] . The advantage of MCS for SA is that it is straightforward 

and very simple to be implemented. However, it is infeasible to obtain 

accurate results using MCS if a demanding computational simulation 

is used. To cope with this, more advanced techniques have to be em- 

ployed. SA using cheap analytical replacement of the true function, or a 

metamodel, is one way to handle this. Metamodeling techniques such as 

radial basis function [4] , Kriging [5–9] , probabilistic collocation [10] , 

and polynomial chaos expansion (PCE) [11–14] can be employed for SA 

purpose. 

In the closely related field of structural reliability analysis, metamod- 

eling techniques have been widely employed to accelerate the compu- 

tation of failure probability [15–20] . Compared to other metamodels, 

Kriging metamodel is particularly useful for reliability analysis due to 

the direct availability of error estimation that allows one to deploy ac- 

tive learning strategy [21–23] (i.e., Kriging with adaptive sampling). 

Active learning works by adding more samples so as to increase the ac- 

curacy of the metamodel near the region of interest, that is, the limit 

state. Besides Kriging, PCE has also been employed for structural reli- 

ability analysis purpose [24–27] . Recently, a combination of PCE and 

Kriging within the framework of universal Kriging and active learning 

was developed to handle rare event estimation problem [28] . 

Metamodels in UQ and SA are required to be globally accurate for a 

precise estimation of sensitivity indices. Although not in the context of 

global SA, the use of Kriging models with adaptive sampling to progres- 

sively refine the global accuracy has been explored by some researchers 

within the context of UQ [29,30] . Dwight and Han proposed an adap- 

tive sampling technique for UQ by using a criterion based on the prod- 

uct of the Kriging uncertainty and the probability density function of 

the random inputs [31] , which is useful for cases with non-uniform dis- 

tributions. Another alternative is to construct local surrogate models 

such as Dutch intrapolation [32] and multivariate interpolation and re- 

gression [33,34] in order to provide the error measure. A recent survey 

of adaptive sampling for Kriging and other surrogate models for var- 

ious applications can be found in Liu et al. [35] . Other than Kriging, 

polynomial-based metamodels, especially PCE, are highly useful and 

competitive to the Kriging model when the quantities of interest are 

the statistical moments and sensitivity indices. 

The advantage of PCE for UQ and SA purpose is that the calcula- 

tion of Sobol sensitivity indices can be directly performed as the post- 

processing step [36,37] . This is in contrast to other metamodelling tech- 

niques where MCS still needs to be performed on the analytical meta- 

model to obtain the Sobol indices. The approximation quality of the 

metamodel can be further enhanced by including gradient information. 

Some methods that have been reformulated in order to include gradi- 

ent information are gradient-enhanced Kriging [31,38–41] , compressive 

sensing-based PCE [42] , and sparse grid method [43] . However, it is 

worth noting that obtaining gradient information is a tedious task and 

is not always possible for many applications. In this paper, we assume 

that gradient information is not available. 

The PCE method is based on homogeneous chaos expansion, which 

itself is based on the seminal work of Wiener [44] . The earliest version 

of PCE computes the coefficients by using Galerkin minimization. This 

intrusive scheme needs modification of the governing equation and the 

simulation code in order to perform the UQ procedure [14] . The diffi- 

culty with the intrusive scheme is that the derivation of the modified 

governing equation might be very complex and highly time-consuming. 

In this paper, the method of interest is non-intrusive PCE [12,14] , that 

allows the use of legacy code since it can be treated as black box simula- 

tion. Based on how it estimates the PCE coefficients, non-intrusive PCE 

can be classified into two categories: 

1. Spectral projection , which estimates the coefficients by exploiting the 

orthogonality of the polynomial and quadrature [11,12] . 

2. Regression , which estimates the coefficients by using least-square 

minimization [25,45] . 

Note that the definition of regression-based PCE is different from the 

regression-based SA. The definition of the former is that a regression- 

based technique is used to build the PCE metamodel, while the defi- 

nition of the latter is the utilization of linear approximation within SA 

framework. 

PCE has been developed and implemented as a tool for SA since 

the work of Sudret [36] . Further simulations are not necessary be- 

cause the Sobol indices in PCE are obtained in the post-processing 

phase [36,37] by exploiting the orthogonality of the polynomial bases. 

PCE is now a widely used approach in the field of UQ due to its 

strong mathematical basis [46] . For regression-based PCE, sparse-PCE 

based on least-angle-regression is an efficient method to obtain the 

Sobol indices without the need to determine the polynomial bases a 

priori [47,48] . Another alternative for sparse PCE is using a compres- 

sive sensing-based technique [49,50] that employs orthogonal match- 

ing pursuit to scan the most influential polynomial bases. While for 

the spectral-projection based PCE, the sparse grid interpolation tech- 

nique [51–54] can be employed to reduce the number of collocation 

points in high-dimensionality for SA purpose [55–59] . Recent advances 

in this field include the use of PCE for multivariate SA [60] . Our interest 

in this paper is to obtain Sobol sensitivity indices for global SA purpose 

by using polynomial chaos expansion (PCE). 

In some applications, simulations with multiple levels of fidelity are 

available. The fidelity here is defined as the measure of how accurate 

the model approximates the reality. The fidelity level is typically catego- 

rized into high- and low-fidelity, where the categorization of the model 

into high- or low-fidelity depends on the case being investigated. The 

high-fidelity (HF) simulation is the most accurate but is typically more 

computationally demanding than the low-fidelity (LF) simulation. On 

the other hand, the LF simulation is less accurate but many evaluations 

could be performed since it is cheaper to evaluate. For example, a PDE- 

solver with a very fine and coarse mesh can be treated as the HF and LF 

simulation, respectively. An approach that utilizes simulations with mul- 

tiple levels of accuracy is commonly called multi-fidelity (MF) method. 

The common technique to apply MF simulations is to use LF simulations 

to capture the response trend and employ HF simulations to correct the 

response. 

Multi-fidelity simulation is commonly used to aid and ac- 

celerate the optimization process. Co-Kriging [61,62] and space- 

mapping [63,64] are two examples of surrogate-based methods that 

rely on MF simulations; mainly for optimization purposes. Multi-fidelity 

techniques for UQ purpose recently appeared in literature. Among the 

first is the multi-level Monte Carlo (MLMC) method which was firstly de- 

veloped in the context of solving stochastic PDEs problem [65,66] and 

was further developed to handle general black-box problems [67] . The 

MF Kriging method is also applicable for UQ purpose [68] . Recently, a 

non-intrusive MF-PCE based technique to solve UQ problems was devel- 

oped. The method works by combining the LF and correction PCE into 

a single MF-PCE [69] . The coefficients of the LF and correction PCE can 

be obtained by employing spectral projection [69] or regression-based 
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