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A B S T R A C T

Distribution based sensitivity analysis (DSA) computes sensitivity of the input random variables with respect to
the change in distribution of output response. Although DSA is widely appreciated as the best tool for sensitivity
analysis, the computational issue associated with this method prohibits its use for complex structures involving
costly finite element analysis. For addressing this issue, this paper presents a method that couples polynomial
correlated function expansion (PCFE) with DSA. PCFE is a fully equivalent operational model which integrates
the concepts of analysis of variance decomposition, extended bases and homotopy algorithm. By integrating
PCFE into DSA, it is possible to considerably alleviate the computational burden. Three examples are presented
to demonstrate the performance of the proposed approach for sensitivity analysis. For all the problems,
proposed approach yields excellent results with significantly reduced computational effort. The results obtained,
to some extent, indicate that proposed approach can be utilized for sensitivity analysis of large scale structures.

1. Introduction

All physical systems have inherent associated randomness. This
randomness may exists either in the model formulation [1–4] or in model
parameters (aleatoric uncertainty) [1,2]. Naturally these uncertainties
propagate and is reflected in the model results and predictions [5]. The
knowledge regarding the influence of the input uncertainties on the model
response is extremely important to a design engineer. In this regard, the
sensitivity analysis is an important tool which quantifies the relative
importance of the input variables. Given limited computational resource,
sensitivity analysis may be used to identify and eliminate the lesser
important variables. Due to this reason, sensitivity analysis has found wide
application in stochastic computations [6–10], environmental science [11],
geographic information systems [12], physiochemical systems [13,14] etc.

The last two decades have witnessed significant progress in sensitivity
analysis. The most widely used sensitivity analysis tools are based on the
differential methods [15,16], where the sensitivity analysis is performed by
differentiating the output variable with respect to the inputs. The differ-
entiation is generally performed by employing the finite difference method.
Although easy to implement, this method is computationally expensive
because determining stochastic response corresponding to each system
parameter is demanding, specifically for large scale systems that involve
costly finite element (FE) analysis. To overcome this issue, researchers have
tried to formulate sensitivity index by utilizing direct differentiation [17].
However, it was observed that direct differentiation yields accurate result
only when (a) the underlying function is either linear and (b) the design
point [18] can be accurately traced. Other possible alternatives include

score function based approach [19,20] and perturbation method [21–23].
All these methods come under the broad category of local sensitivity
analysis.

A possible alternative to the local sensitivity analysis are the methods
based on global sensitivity analysis (GSA) [24–28]. GSA is better suited for
stochastic systems because, unlike local sensitivity analysis, GSA does not
compute the sensitivity indexes based on only a few selected points. One of
the popular approaches for GSA is the Morris method [29]. The basic idea
is to vary only one input while keeping the other inputs constant. GSA is
computed based on the local variations at different points. However for
systems involving uncertainties, only partial information is obtained by
employing the Morris method. Another approach for GSA is the variance
based sensitivity analysis proposed by Sobol and his associates [30,31]. As
the name suggests, this approach utilizes the second moment properties to
compute the sensitivity index of a variable. This method is quite popular
because of its simplicity.

Another group of methods for studying the sensitivity of a model inputs
are the distribution based sensitivity analysis (DSA) tools [11,32–34]. In
this method, the sensitivity index depends on the distribution (either
probability density function or cumulative distribution function) of the
response. It is a well-known fact that sensitivity index computed using DSA
is more appropriate as it reflects the overall influence of the input variables
on the output response. However, computational inefficiency of this
method has prohibited its use in mechanics oriented problems.

Motivated by the limitations highlighted above, present study focusses
on developing an efficient algorithm for distribution based GSA. To be
specific, proposed approach couples polynomial correlated function expan-
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sion (PCFE) [35–41] with DSA. This coupling results in a significant
reduction of the computational cost. Furthermore unlike most methods,
proposed method is capable of performing sensitivity analysis of system
entailing both dependent and independent random variables without the
need of any ad hoc transformations.

The rest of the paper is organised as follows. In Section 2, the GSA has
been reviewed. Section 3 describes the basic formulation of PCFE. In
Section 4, an algorithm for integrating PCFE into the framework of DSA
has been proposed. Computational efficiency of the proposed approach has
also been explained. Application of the proposed approach for sensitivity
analysis has been demonstrated in Section 5. Finally, Section 6 provides the
concluding remarks.

2. Global sensitivity analysis: a review

In this section, a brief description of global sensitivity analysis has been
provided. Suppose, the uncertain input variables of a system are repre-
sented by an N dimensional vector x x xx = { , , …, } ∈N

N
1 2 . Given the

uncertainty in x, it is obvious that the output response Y would also be
uncertain with the variability of Y consisting of different components of x.
The objective of present study is to evaluate these contributions, such that
one have a clear idea about the relative importance of the input variables.
Saltelli and Tarantola [42] conferred that in sensitivity analysis based on
variance “We are asked to bet on the factor that, if determined (i.e., fixed to
its true value), would lead to the greatest reduction in the variance of Y ”.
Hence,

Var Y Var Y x

Var Y
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where (•) and Var(•), respectively, denotes expectation and variance
operators. i in Eq. (1) denotes the sensitivity index of the ith variable.

On contrary in DSA, “We are asked to bet on the factor that, if
determined would lead to the greatest expected modification in the
distribution of Y ” [43]. Distribution based sensitivity measure was first
proposed by Park and Ahn [44]. The sensitivity measure considered in this
study takes the following form [11]:
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where ΩY is the domain of the output response Y and ϖ(•) denotes the
probability density function. A visual representation of the distribution
based sensitivity measure is shown in Fig. 1.

Remark 1. As pointed out by Borgonovo [11,33], the sensitivity index
described in Eq. (2) has two desirable properties. Firstly, δi is
individually and jointly normalised, i.e., δ0 ≤ ≤ 1i and δ = 1N12… .
Secondly, δi is invariant to monotonic transformation.

Remark 2. If input variable xi and response Y are independent, δ = 0i
[11,33].

Remark 3. Iman and Hora [45] pointed out that in presence of long
input/output, the statistical quantifies (such as variance) obtained might
not be robust. As a consequence, variance based sensitivity measures loses
its robustness. Distribution based sensitivityindices are free from this
problem.

Remark 4. Computation of sensitivity index by Eq. (2) involves
extremely large number of actual function evaluations. Due to this
reason, use of this method is limited to models where thousands of
model evaluations are possible within a feasible computer time.

One possible alternative for addressing the abovementioned issue is the
application of surrogate model [11,46,47] to replace the original model. In
this work, an efficient fully equivalent operational model, referred here as
PCFE, has been used to replace the original model. The detailed description
of this method is provided in next section.

3. Polynomial correlated function expansion

Polynomial correlated function expansion (PCFE) [35–41] is a fully
equivalent operational model recently developed for capturing the high
dimensional relationship between sets of input and output model variables.
It can be viewed as an extension of classical functional ANOVA decom-
position [48] where the component functions are represented by utilizing
the extended bases [49]. In literature, PCFE is also referred as generalised
high dimensional model representation [50]. The unknown coefficients
associated with the bases are determined by employing a homotopy
algorithm (HA) [51–53]. HA determines the unknown coefficients by
minimizing the least squared error and an objective function. The objective
function defines an additional criteria that is enforced on the solution. In
PCFE, the hierarchical orthogonality of the component functions is
considered to be the additional criteria.

Let, x x xx = { , , …. }N1 2 be a N dimensional vector, representing the
input variables of a structural system. It is quite logical to express the
output Y as a finite series as [31]
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where g0 is a constant and termed as zeroth order component function.

Definition 1. : Assume, two subspace R and B in Hilbert space are
spanned by basis r r r{ , , …, }1 2 1 and b b b{ , , …, }m1 2 respectively. Now if (i)
B R⊃ and (ii) B R R= + ⊥ where, R⊥ is the orthogonal complement
subspace of R in B, we term B as extended basis and R as non-extended
basis [50].

Now if ψ be some suitable basis for x X⊆ , where NX: = {1, 2, …, },
Eq. (3) can be expressed as [35,49]:
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where α indicates the unknown expansion coefficients. However, Eq. (4)
represents an infinite series and needs to be truncated. Considering upto

Fig. 1. Visual representation of DSA. si is the difference between the unconditional PDF

f Y( ) and conditional PDF f Y x( | )i , obtained by fixing the variable xi.
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