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a b s t r a c t

This study presents a global sensitivity analysis approach based on entropy to investigate the influence of
excitation and structural parameters on the engineering demand parameters. The sensitivity of the non-
linear dynamic structural response using synthetic earthquake ground motions to major uncertain
sources, propagation paths and site variables of the simulated ground motion, and physical characteris-
tics of the structures is investigated using an entropy-based sensitivity index as a measure of importance
to determine which variables are most significant. The results show that the uncertainties of ground-
motion variables are more significant than those in the structural properties. The greatest contributor
to the variability in the seismic demand is the uncertainty in earthquake source parameters. Our analysis
also revealed that viscous damping is the most important structural source of variability in seismic struc-
tural demands. Structural dynamic analysis due to simulated excitation opens the door for the wider use
of seismological theory to understand the relationship between the structural response and seismological
variables.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Uncertainty poses one of the greatest challenges to the evalua-
tion of building performance under seismic loading and is gener-
ally costly in earthquake engineering. The main sources of
uncertainty in earthquake engineering include the lack of knowl-
edge of future ground motions and variability in the physical char-
acteristics of structures. Reducing uncertainty in each of these
different sources can help reduce cost.

Sensitivity analysis (SA) is an important task in earthquake
engineering. SA is typically used to increase the understanding of
the relationships between input variables and output in a compu-
tational model and the relative contribution of each input variable
to the uncertainty in the model output [1]. Thus, the variables that
do not contribute substantially to the model uncertainty can be
fixed as their best estimates rather than treated as random to sim-
plify the analysis. In addition, the variables that cause significant
variability in the output can then be the focus of attention so that
they are better understood, thereby reducing the variability of the
output. Usually, SA methods are classified into local and global

methods. Generally, local SA methods have some key limitations.
In these methods, the sensitivity study is conducted at the central
estimate of input variables, whereas the results could be quite dif-
ferent at other points. Additionally, local SA methods rank the
input parameters in order of significance, but do not quantify
how much a given parameter is more important than another. In
contrast, global SA methods apportion the output variability to
the variability of the input variables when they vary over the
whole uncertainty domain [2]. Using the global SA approach, the
quantitative relative importance of each input variable as well as
the influence of key variables can be measured in terms of the
demand.

The sensitivity of seismic demand to the uncertain variables has
been studied by several authors. However, the focus of the major-
ity of these studies has concentrated on approximate or local SA
methods [3–7]. Additionally, in most previous studies, uncertain-
ties in ground motion are commonly represented by a site-
specific hazard curve of intensity measure and record-to-record
variability [8–10]. This representation suffers from concerns
regarding the lack of available recorded strong motion data. More-
over, the selected ground motion records should generally be
scaled and/or modified to make them more representative of the
target condition. This manipulation changes the relationship
between the characteristics of the recorded ground motions and
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their original physical conditions and may render motions with
unrealistic characteristics [11].

This paper aims to assess the relative contribution of different
sources of uncertainty, including ground motion variables and
structural properties on the inelastic response of concrete struc-
tures using a global SA method. Here, we propose to apply a global
SA method based on information theory, which uses entropy as a
sensitivity measure [12]. The entropy-based global SA method
can reveal complementary or additional information compared to
the most often applied variance-based method [13]. As an alterna-
tive approach to the use of past earthquake records, we simulate
realistic synthetic seismograms based on the stochastic finite-
fault ground motion simulation technique [14–15]. One advantage
of ground-motion simulation is that the synthetic time series
result from a given earthquake scenario and do not need to be
scaled or modified for any further applications. Furthermore, using
ground motion simulation methodology, we can separate the influ-
ences of seismic sources, wave propagation, and local geological
condition variables.

2. SA methodology

SA is an efficient tool to study the behavior of a model and to
determine the significance of each input parameter to the model
output uncertainty. Although many of the previous global SA stud-
ies were performed based on variance-based methods [16–17], in
which the variance of output is decomposed as a sum of the
contributions of each input variable, these methods have some
well-known limitations [18]. The main challenge for implementing
variance based SA is that it is typically needed to run the model
many times using some sampling methods. This restricts the use
of variance-based methods for SA of complex computer codes and
slow-to-evaluate models that require a long time for a single run.

In this study, we used an alternative SA approach based on
information-theoretic tools to quantify the relationship between
the input parameters and the output distribution [12,19]. This glo-
bal SA method is suitable for cases where the model is expensive to
evaluate. Also the entropy-based global SA method takes into
account situations where variance is not well adapted [13].

Let the simulation model be written as Y = f(X), where X con-
tains the random input and system parameters {X1, X2, . . ..,Xn} that
are used to generate the response function f(X). The model f maps
elements of the vector X to output Y. Because X is random, Y is ran-
dom in general. In information theory, entropy measures the
amount of uncertainty of an unknown or random quantity [20].
The entropy of a discrete random variable Y with probability mass
function p(y)is defined as

HðYÞ ¼ �
X
yY

pðyÞ log pðyÞ ð1Þ

Entropy is a function of the probability mass function p and does
not depend on the values of Y. This is a notable differencewith using
the variance as an uncertainty indicator, which is computed by tak-
ing the sum of squares of the deviations. Entropy is a quantitative
measure to assess uncertainty in a single random variable. Entropy
H(Y) is zero when Y is deterministic, and reaches a maximum value
for uniform distributions. The concept of entropy can be extended
to a pair of random variables. For conditional entropy, H(Y|Xi),
which indicates the degree of uncertainty, given knowledge of
one of the input parameters Xiin the output Y, we have:

HðY Xij Þ ¼ �
X
xeXi

X
yeY

pðy; xÞ logfpðy xj Þg ð2Þ

where p(x,y) is the joint probability distribution function of Xi and Y,
and p(y|x) denotes the conditional density of y given x. H(Y|Xi)

defines the average loss of information of Y when the behavior of
a random variable Xi is known.

Based on these definitions, the mutual information between
two random variables is a quantity that measures their mutual
dependence. The mutual information I(Y, Xi) between two random
vectors Xi and Y is defined by

IðY;XiÞ ¼
X
xeXi

X
yeY

pðy; xÞ log pðy; xÞ
pYðyÞpXi

ðxÞ

 !
¼ HðYÞ � HðY XiÞj ð3Þ

where pXi
ðxÞ and pYðyÞ are the marginal densities for Xi and Y,

respectively. The mutual information measures how much knowing
the input parameter Xi reduces uncertainty about the output Y.
Mutual information equals zero if and only if Xi and Y are indepen-
dent. A low mutual information value represents that knowing Xi

reveals little about the value of Y, whereas a high mutual informa-
tion value represents that knowing Xi reveals considerable informa-
tion about the value of Y. Because this quantity measures the
mutual dependence between two random variables, it is useful to
exploit it for our task of SA. Krzykacz-Hausmann [12] defined the
information-theoretic-based sensitivity index as:

gi ¼
IðY;XiÞ
HðYÞ ¼ 1� HðY XiÞj

HðYÞ ð4Þ

which is a representation of the information learned about Y based
on the knowledge of Xi. This index is taken as a measure of impor-
tance of the random input variables in this study.

In practice, the model could be run with the dataset of input
excitation and structural parameters, so the interested output
(seismic structural demands in this study) can be determined. By
repeating this procedure multiple times using the MC simulation
method, a dataset of input variables and their corresponding out-
puts are achieved. Eventually, the standard methods for the esti-
mation of entropy and mutual information can be used to
determine the rate of decline of the output entropy as a result of
having knowledge about each of the input random variables.

3. Stochastic ground motion simulation model

Stochastic ground motion simulation is widely used to simulate
acceleration time series for use in engineering applications [21,22].
In the absence of significant locally recorded strong motion data,
such simulated motions can be used in the reliability assessment
of structures. The stochastic finite-fault simulation model, which
is able to characterize key features of the earthquake source pro-
cess and wave propagation, is used to simulate strong ground
motions [14,23].

In the stochastic finite-fault method, the fault plane is divided
into a number of sub-faults, and each sub-fault is represented as
a point source. Using the seismological model of Boore [24], the
ground motion contributions from each sub-fault is calculated
stochastically. The simulated synthetic time histories of all the
point sources are summed up at the observation point by applying
time delays. In this approach, the acceleration spectrum of the
shear waves for horizontal ground motions due to ijth sub-fault,
Aij(f), may be modeled as follows:

Aijðf Þ ¼ ðCM0ijHijð2pf Þ2=½1þ ðf=f 0ijÞ2�Þ expð�pfRij=Qðf ÞbÞ
� expð�pfjÞGðRijÞDðf Þ ð5Þ

where M0ij,f0ij and Rij are the ijth sub-fault seismic moment, corner
frequency and the hypocentral distance from the observation point,
respectively. Hij is a scaling factor to conserve the high-frequency
spectral level of the sub-faults. The corner frequency is given by
f0ij = 4.9 � 106b(Dr/M0ij)1/3, where Dr is the stress parameter in
bars, M0ij is in dyne centimeters, and b is the shear-wave velocity
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