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HIGHLIGHTS

® A framework for uncertainty investigation in model-based DES design is presented.

® A deterministic DES design model based on the energy hub concept is formulated.

® Probabilistic descriptions of all the relevant uncertain parameters are developed.

® Monte Carlo uncertainty analysis examines the variation of the design model outputs.
® Two-step sensitivity analysis identifies the most influential uncertain parameters.

ARTICLE INFO ABSTRACT

Keywords: The effective design of Distributed Energy Systems (DES) is subject to multiple uncertainties related to aspects
Distributed energy system like the availability of renewable energy, the building energy demands, and the energy carrier prices.
Energy hub optimization Nevertheless, current practices involve the use of deterministic design models, which overlook uncertainty and

Monte Carlo uncertainty analysis
Global sensitivity analysis
Morris screening

Sobol indices

can lead to suboptimal DES configurations that fail to deliver the desired performance.

A necessary condition in order to obtain robust DES designs against uncertainty is the understanding of
uncertainty’s impacts and main drivers. Therefore, this paper presents a novel methodological framework for the
investigation of uncertainty in the context of DES design, which combines optimisation-based DES models and
techniques from Uncertainty Analysis (UA) and Global Sensitivity Analysis (GSA). Moreover, the application of
the framework is illustrated with a case study for the optimal DES design of a Swiss urban neighbourhood.

Embarking from a deterministic DES design model, first, all sources of uncertainty are identified and ap-
propriate probabilistic descriptions are assigned to all uncertain model parameters. UA is then performed using
Monte Carlo (MC) simulations to quantify the impacts of uncertainty. Results reveal substantial variations in
terms of economic and carbon performance of the optimal DES, but also in terms of optimal DES configurations.
Moreover, the UA results indicate that the optimal system costs are mostly higher than the deterministic cost
estimates, while the inverse is observed for the case of carbon emissions. Additionally, in many of the MC
simulations, the resulting optimal DES configurations deviate significantly from the deterministically obtained
designs, which confirms the risk of suboptimal decisions in deterministic design processes. Moreover, the results
of UA can function as decision support by identifying the DES configurations that are optimal for most rea-
lisations of uncertainty.

Finally, to identify the uncertain parameters that are mostly responsible for the variation of the economic
performance of the DES, a two-step GSA is launched, combining the Morris method and the variance-based Sobol
method. Results of the GSA indicate the energy demand patterns and the energy carrier prices as primarily
responsible for the variability of the optimal system cost, while parameters like the investment costs and the
technical characteristics of the technologies exert only minimal influence. The results of GSA, besides offering a
better understanding of uncertainty to DES designers, also identify the parameters for which additional effort
needs to be invested to reduce their uncertainty and, as a result, the uncertainty associated with DES design.
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1. Introduction
1.1. Background and previous work

One goal of the United Nations’ ‘2030 Agenda for Sustainable
Development’ [1] is the transition to a more efficient, sustainable energy
future that will include high shares of renewable energy in the global
energy mix. A promising pathway towards this vision lies in the
adoption of Distributed Energy Systems (DES). DES are placed in
proximity to the energy end-use sector they serve, hence, minimising
energy transmission losses [2] and incorporating locally available en-
ergy resources. Moreover, they typically incorporate multiple energy
carriers and renewable and other efficient technologies that convert,
store and deliver energy in the form of heating, cooling, and electricity
or as other energy carriers (e.g. hydrogen) [3], which allows them to
increase operational flexibility Overall, DES deliver a series of eco-
nomic, environmental and technical benefits as discussed in [3-5].

The effective design of DES is critical for the realisation of their
benefits. As a result, mathematical optimisation models are commonly
developed to assist with their design [6-26]. For instance, Merkel et al.
[14] developed an optimisation model for the design of cost-optimal
micro-CHP systems for a set of residential buildings. Carvalho et al.
[20] developed an optimisation model to determine the optimal
synthesis of a hospital’s trigeneration plant investigating the trade-off
between system costs and carbon emissions. Finally, Di Somma et al.
[26] presented a model for the design of a DES for 30 residential
buildings with the major innovation of their study being the integration
of exergetic objectives in the design. All these DES design models,
though, are characterised as deterministic, because they assume perfect
knowledge of all model parameters. However, the DES design process
combines multiple economic, technical, and policy aspects, which can
render model input parameters uncertain. Such aspects include the
stochastic nature of renewables and the unknown future energy carrier
prices, among others.

Uncertainty in DES design introduces additional complexity along-
side the risk of suboptimal decisions in cases when the actual parameter
values deviate from the ones assumed during the design. Under such
circumstances, it is beneficial to understand how uncertainty influences
the optimal DES designs and to identify the most influential uncertain
parameters. Uncertainty Analysis (UA) and Sensitivity Analysis (SA) are
methods that are exactly aimed to address such concerns.

UA investigates the variability of a model’s output given uncertain
input parameters; hence, it allows modellers to answer the question
“How uncertain is my model output?” UA is mostly performed via Monte
Carlo (MC) simulations in which a deterministic model is evaluated re-
peatedly for different uncertain parameter samples. UA then seeks to
statistically characterise the variable model output by calculating sta-
tistical measures, identifying patterns etc.

A number of studies have performed UA in the context of DES. MC
analysis of the optimal dispatch of an energy hub system is performed
in [27] considering uncertain energy carrier prices. Mavrotas et al. [28]
performed UA for the design of a DES considering uncertain discount
rate and energy carrier prices. In [29], UA is performed for the design of
a multi-generation system considering uncertainty pertaining to in-
vestment costs, the price of ethanol, and the CO, emissions displaced by
ethanol. Besides economic parameters, UA was used in [30] to in-
vestigate the impact of wind power uncertainty on the design of a mi-
crogrid. Similarly, Li et al. [31] performed MC simulations to account
for uncertain energy demands in the design of a trigeneration system.
Finally, Dufo-Lépez et al. [32] investigated the uncertainties of solar
radiation and energy demands for the design of an off-grid energy
system using UA.

Overall, though, the number of studies performing UA remains
limited, while the focus is commonly placed only on a few uncertain
parameters with some studies considering economic parameters (e.g.
energy prices) and others renewable energy availability and building
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energy demands. A final shortcoming pertains to the treatment of un-
certain time series parameters like the energy demands and solar/wind
patterns. Typically, each time interval is assigned a probability dis-
tribution (e.g. the Weibull in [30] and the Normal in [31,32]) and is
treated independently from the rest. Variable profiles are generated by
sampling random values from the specified distributions for each time
step. However, this approach neglects the autocorrelation of these time
series. Moreover, correlations and interactions between parameters are
not considered (e.g between a building’s heat demand and solar ra-
diation/solar gains). Finally, specific aspects that cause the uncertainty
of these parameters like occupant behaviours cannot be explicitly
considered.

Sensitivity Analysis (SA) is complementary to UA and aims to
quantify the importance of uncertain parameters regarding their con-
tribution to model output variability [33]. The most common SA
method is Local Sensitivity Analysis (LSA), which investigates parameter
importance by varying one parameter at a time, while keeping all other
parameters fixed. The popularity of LSA stems primarily from its sim-
plicity and ease of understanding [34]. However, LSA is an inadequate
practice as it does not effectively cover the input parameter space. Ad-
ditionally, parameter interactions cannot be studied as this would re-
quire simultaneous variation of the input parameters [34]. The draw-
backs of LSA are alleviated by using Global Sensitivity Analysis (GSA),
which varies all uncertain parameters simultaneously, hence, offering
better coverage of the uncertain parameter space and allowing for the
study of parameter interactions. A wide range of GSA techniques is
available [35] and up-to-date reviews of GSA developments are given in
[36,371].

Despite the maturity of GSA methods and their great diffusion in
relative fields to DES, such as Building Performance Simulation (BPS)
[38], the majority of the studies in DES design use LSA to investigate
parameter importance (e.g [13,14,39-49]) and only a limited number
of studies have applied GSA. For instance, Moret et al. [50] have used
the GSA Morris method [51], on the problem of optimal design of a
residential energy system, considering multiple technical, economic
and energy demand uncertainties. Lythcke-Jorgensen [29] also applied
the Morris method to assess the relative importance of each input
parameter on output variability.

1.2. This paper

In summary, previous efforts that used UA to investigate uncertainty
in DES design considered only a subset of the relevant uncertain model
parameters instead of the whole set, while the probabilistic descriptions
assigned to time series parameters exhibit certain drawbacks.
Moreover, studies that aimed to investigate parameter importance with
SA mostly chose to perform LSA instead of the more accurate GSA.

This paper aims to address these shortcomings via the following
contributions:

i. The development of a complete methodological framework that

integrates state-of-the-art methods for UA and GSA with optimisa-

tion-based DES design models.

The consideration of the full set of uncertain model parameters in a

DES design model.

The development of a modelling scheme for the generation of

variable building energy demand and solar radiation profiles, which

better reflect their stochastic nature and correlations. The scheme

incorporates aspects like stochastic occupant behaviours and cli-

mate change projections and is coupled with a Building

Performance Simulation (BPS) tool.

iv. The application of the framework to a case study to illustrate the
insight that can be generated and to highlight the importance of
uncertainty considerations.

ii.

iii.

Hence, the main novelty of this paper is that it is the first study in
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