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a  b  s  t  r  a  c  t

With  the  aim  of  surgical  success,  the  evaluation  of  dental  implant  long-term  stability  is an  important  task
for dentists.  About  that,  the  complexity  of  the  newly  formed  bone  and the  complex  boundary  conditions
at  the  bone-implant  interface  induce  the  main  difficulties.  In this  context,  for  the  quantitative  evaluation
of primary  and  secondary  stabilities  of dental  implants,  ultrasound  based  techniques  have  already  been
proven  to be  effective.  The  microstructure,  the  mechanical  properties  and  the  geometry  of  the  bone-
implant  system  affect the  ultrasonic  response.

The  aim  of this  work  is  to extract  relevant  information  about  primary  stability  from  the  complex
ultrasonic  signal  obtained  from  a probe  screwed  to the  implant.  To  do  this,  signal  processing  based
on  multiscale  analysis  has  been  used.  The  comparison  between  experimental  and  numerical  results  has
been  carried  out,  and a  correlation  has been  observed  between  the  multifractal  signature  and  the  stability.
Furthermore,  a sensitivity  study  has  shown  that the  variation  of  certain  parameters  (i.e. central  frequency
and  trabecular  bone  density)  does  not  lead to  a change  in  the  response.

©  2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

A correct evaluation of dental implant stability is crucial for
surgical success. First of all, two types of stability are of interest:
(i) primary or mechanical stability and (ii) secondary or biological
stability. Primary stability is reached during the implant place-
ment, while secondary stability occurs after bone remodeling and
osteo-integration. It is proven that long-term anchorage of a dental
implant depends on the quantity and quality of the surrounding
bone tissue, the peri-implant bone. Indeed, the bone remodel-
ing occurring at the bone-implant interface [8] leads to changes
in the bone mechanical properties [14]. From a mechanical point
of view, modeling difficulties are mostly due to the complexity
of newly formed bone tissue (a complex, anisotropic, porous-
viscoelastic medium in constant remodeling), to its multiscale and
time-evolving nature [7], but also to the boundary conditions at the
bone-implant interphase. This means that primary and secondary
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stabilities are affected by several parameters, as bone quality, bone
density or amount of bone in contact with the implant.

In literature, ultrasound based techniques have already been
proven to be effective in the quantitative evaluation of primary
and secondary stabilities of dental implant [15,16,18–21], for both
experiments and numerical simulations. The technique is based on
the following assumptions: (i) dental implants act as wave guides
for ultrasounds; (ii) propagation in wave guides is considerably
affected by changes in boundary conditions, i.e. by different lev-
els of stability. The objective is to inspect the ultrasonic response of
the implant information and correlate it to the evolution of stabil-
ity, by using signal processing techniques. As already pointed out,
the ultrasonic response depends on parameters like bone structure,
geometry or mechanical properties, which, in vivo, all vary in par-
allel, and whose effect on stability is not clear. Thus, with the aim
of analyzing the effect of these parameters, mechanical modeling is
a key resource. Indeed, numerical simulation is advantageous with
respect to experiences because it can perform, in a controlled man-
ner, a sensitivity analysis with respect to parameters such as bone
density and stiffness.

Now, two  main issues arise: (i) how to evaluate the specific sig-
nature left from the aforementioned parameters on the signal and
(ii) the extraction of the information.

Therefore, the signal issued from the measurements is complex.
In recent studies developed by our group, the envelope of the signal
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has been taken into account in signal processing (see e.g. [20]). In
the literature, similar irregular and complex biological data have
already been approached with fractal and/or multifractal analysis
[4,9,10], with the aim of characterization and classification of com-
plex signals. In order to analyze the signal in its wholeness, more
advanced signal processing techniques based on wavelet tech-
niques have been introduced in the context of multifractal analysis;
but we will use them with a slightly different purpose since, as we
will see, multifractal analysis as such cannot be performed for such
signals.

Following the technique employed in [15,16,18–21] different
levels of implant stability will be artificially induced by a progres-
sive unscrewing on the dental implant. This configuration has been
used in both experimental and numerical analysis. The numerical
results are obtained by using the finite element method.

This paper is structured as follows. After this introduction, Sec-
tion 2 introduces the geometrical configuration of the problem (for
which, with the aim of simplifying calculations, an axisymmetric
geometry has been considered) and then provides the axial sym-
metric equations of motion; also the Finite Element (FE) analysis
is introduced. Then, Section 3 presents a rapid overview on the
wavelet based multiscale analysis. Section 4 is devoted to the pre-
sentation and discussion of the obtained results. Finally, Section 5
sets out conclusion and some perspectives.

2. Modeling wave propagation in the bone-implant system

2.1. Geometrical configuration and governing equations

The geometrical configuration reported in Fig. 1 shows the axial
symmetry with respect to the implant central axis. According to
that, an axisymmetric 2D model has been used. A contact planar
transducer is placed on the emerging surface of the implant. A
double-layer structure of a cortical bone 1 mm thick and an half-
space of trabecular bone compose the considered bone model. In
the geometrical configuration shown in Fig. 1, the titanium den-
tal implant commercialized by Implants Diffusion International
(IDI1240, IDI, Montreuil, France), with a length of L = 11.5 mm and
a diameter of D = 4 mm,  is recreated. In addition, a specific heal-
ing abutment is inserted in the upper part of the implant. When
the implant is totally inserted in the bone specimen, as it is in the
configuration considered in this work, we deal with the typical
clinical set-up. In the present study, volume forces are neglected
and it is assumed that all the considered media exhibit isotropic
homogeneous mechanical properties.

The cylindrical coordinates are used and designated by (r, �, z).
The axisymmetric equations of motion in each subdomain are

the following:
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where � stands for the mass density, ur and uz represent, respec-
tively, the radial and axial components of the displacement vector;
�rr, �rz, ��� , �zz are the components of the stress tensor �; fur-
thermore, the double dot indicates the temporal second partial
derivative. According to Hooke’s relation, the constitutive relation
for an isotropic homogeneous material can be expressed as:
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where E and � are Young’s modulus and Poisson coefficient, respec-
tively, Tr() is the trace operator of a tensor, I is the identity tensor

Fig. 1. Cross-section view of the 3-D axisymmetric geometrical configuration used
in  the numerical simulations. The domains are denoted with a subscript correspond-
ing to the trabecular bone (�t), the cortical bone (�c), the implant (�i), and the
absorbing layers associated to trabecular and cortical bone (�ta and �ca , respec-
tively).

and � is the strain tensor whose non-zero components are given
by:
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Young’s modulus has been considered to be related to the den-
sity � according to the following power-law relation [5]:

E = E0

(
�

�0

)1.96
, (5)

where the subscript 0 indicates the reference values for the Young’s
modulus and the density.

The contact planar transducer, placed on the upper emerging
surface of the implant specimen (see Fig. 1), generates a signal
corresponding to a time pulse uniform pressure whose temporal
history is expressed as follows:

p(t) = A
[

exp −4(fct − 1)2] × sin(2	fct), (6)

where A is the amplitude, fc is the pulse central frequency and t is
the time.

The continuity of displacement and stress fields between the
subdomains is imposed. Moreover, in order to prevent the non-
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