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a b s t r a c t 

In a typical one-period decision making model under uncertainty, unknown consequences are modeled as 

random variables. However, accurately estimating probability distributions of the involved random vari- 

ables from historical data is rarely possible. As a result, decisions made may be suboptimal or even 

unacceptable in the future. Also, an agent may not view data occurred at different time moments, e.g. 

yesterday and one year ago, as equally probable. The agent may apply a so-called “time” profile (weights) 

to historical data. To address these issues, an axiomatic framework for decision making based directly on 

historical time series is presented. It is used for constructing data-based analogues of mean-variance and 

maxmin utility approaches to optimal portfolio selection. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

A typical process of decision making under uncertainty is as fol- 

lows: 

data → uncertainty modeling → 

→ risk preference modeling → choice/decision 

(1) 

Let X be a set of available (feasible) actions. Scheme (1) can be 

formally stated as: (i) modeling unknown consequences of every 

action X ∈ X as a random variable (r.v.) R ( X ), (ii) establishing a nu- 

merical representation U 

′ : R → R for agent’s preference relation, 

defined on a space R of all r.v.’s and (iii) finding best action by 

maximizing U 

′ with respect to X ∈ X : 

max 
X∈X 

U 

′ (R (X )) . (2) 

What an agent has readily available is only histori- 

cal/experimental data and his/her preferences towards risk 

and reward. The rest is statistical inference from the data about 

corresponding uncertain outcomes based on various assumptions, 

which largely depend on the nature of data. For example, measure- 

ments of the length of some object can be reliably assumed to 

be realizations of independent and identically distributed (i.i.d.) 

r.v.’s—timing of those measurements can be safely ignored. By 

the central limit theorem (CLT), the average of a large number 
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of i.i.d. r.v.’s is approximately normally distributed, and conse- 

quently, confidence intervals for the true length can be readily 

obtained. 

Merton’s well-known model ( Merton, 1969 ) of a financial mar- 

ket assumes that asset prices are stochastic processes with sta- 

tionary and independent increments without jumps —the only such 

a stochastic process is a Brownian motion with drift. Cox and 

Ross (1976) argued that asset prices are, in fact, not continuous 

processes—they may have jumps. Stochastic processes with station- 

ary and independent increments (and with discontinuous sample 

paths in general), are called Lévy processes ( Sato, 1999 ) and nowa- 

days are widely-used in modeling of financial markets ( Kou, 2002; 

Madan & Seneta, 1990; Merton, 1976 ). However, it is commonly 

acknowledged that 

(a) The empirical distributions of rates of return of financial assets 

are typically non-symmetric with left tails being much heavier 

than right tails ( Sheikh & Qiao, 2010 ). 

(b) Increments of actual price processes are not stationary , and con- 

sequently, Lévy processes cannot be calibrated with real data 

( Madan, 2010 ). 1 

(c) “Periods of lower returns are systematically followed by com- 

pensating periods of higher returns” ( Siegel, 2007 ) (“mean 

reversion” phenomenon)—evidence that price increments are 

not independent . 

In fact, the above issues with stochastic processes can be “fixed”

by time-series models. For example, autoregressive models AR( p ) 

1 Sato processes ( Sato, 1991 ), whose increments are independent but not neces- 

sarily stationary, can be used instead. 
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assume that the current value of asset’s rate of return depends 

on p previous ones, moving-average models MA( q ) involve last q 

values of a stochastic error, autoregressive-moving-average models 

ARMA( p , q ) generalize AR( p ) and MA( q ), whereas ARIMA models 

generalize ARMA( p , q ), and are suitable to describe a wide range of 

non-stationary processes ( Brockwell & Davis, 2016 ). However, any 

time-series model is merely another approximation of the histori- 

cal data and its parameters are subject to estimation errors. 

The discrepancy between a real-life phenomenon and its model 

is called model error —in contrast to approximation error, which 

can be resolved by simply increasing the sample size, the model 

error implies that an increase of observations of asset rates does 

not directly translate into the accuracy/precision in estimation of 

the probability distributions of the rates. There are various exist- 

ing approaches that address model uncertainty. For example, boot- 

strapping ( Bradley & Tibshirani, 1994 ) generates different scenar- 

ios for the variable of interest from a given time series, robust 

optimization ( Bertsimas, Brown, & Caramanis, 2011 ) assumes that 

probabilities in question belong to certain intervals, whereas dual 

characterization of risk and deviation measures ( Artzner, Delbaen, 

Eber, & Heath, 1999; Rockafellar, Uryasev, & Zabarankin, 2006a ) re- 

lies on risk envelopes, which can be viewed as sets of distortions 

of an underlying probability measure, see Lesnevski, Nelson, and 

Staum (2007) . Notably, Pflug, Pichler, and Wozabal (2012) showed 

that the naive 1/ n investment strategy could be optimal in portfo- 

lio selection when model uncertainty is high. Savage (1972) sug- 

gested to study decisions as functions from some state space � to 

a set of outcomes Y ⊂ R , which are now known as Savage acts . 

This approach involves no probability measure on �—a critical 

feature that gave rise to various Savage-act versions of the ex- 

pected utility theory (EUT) ( Casadesus-Masanell, Klibanoff, & Oz- 

denoren, 20 0 0; Gul & Pesendorfer, 2014 ). For example, Gilboa and 

Schmeidler (1989) proposed to study preference relations over 

acts, i.e., “functions from states of nature into finite-support dis- 

tributions over a set of deterministic outcomes”. In this case, the 

agent ends up with the same optimization problem (2) , where R 

is a functional from X to the set A of all acts, and U 

′ : A → R 

is a numerical representation of Gilboa and Schmeidler’s prefer- 

ence relation. Of course, the list of existing approaches goes far 

beyond these examples, see e.g. Ben-Tal, Ghaoui, and Nemirovski 

(20 09) , Calafiore (20 07) , Chan, Karceski, and Lakonishok (1999) , 

and Wozabal (2012) for alternative approaches and Marinacci 

(2015) and Gilboa and Marinacci (2016) for recent surveys. 

In fact, accurately modeling of outcomes of real-life actions in 

the context of any of these theories is difficult. For example, mod- 

eling of financial portfolio returns in terms of Gilboa–Schmeidler 

acts ( Gilboa & Schmeidler, 1989 ) includes forecasting of a set of 

finite-support distributions, and therefore, could, in fact, be harder 

than that in terms of r.v.’s. The main problem with uncertainty 

modeling is that, contemplating a choice among several alterna- 

tives, an agent ponders what alternative he/she would be most 

benefited from in the future , while the only available information 

is often the data representing historical performances of those al- 

ternatives in the past . 

In view of failure of common statistical assumptions in ap- 

plication to a stock market ( Madan, 2010; Sheikh & Qiao, 

2010; Siegel, 2007 ) and in view of sensitivity of optimal de- 

cisions (portfolios) to errors in estimation of probability distri- 

butions of financial assets ( Grechuk & Zabarankin, 2017; Kon- 

dor, Pafka, & Nagy, 2007 ), this work aims to identify intertem- 

poral principles for comparing historical time series of asset 

rates of return and to develop an axiomatic framework for a 

rational decision making in portfolio theory on the space of 

historical time series. For example, an agent may postulate that if 

A always outperformed B in the past, then A �B , even though better 

past performance does not guarantee better future performance. 

The idea of making decisions based directly on historical data is 

not new, 2 but it has received relatively little attention in economic 

and financial literature. Gilboa and Schmeidler (1995,2001) intro- 

duced a case-based decision theory, which makes decisions based 

on past experience in similar situations. 3 In a financial market set- 

ting, this theory would identify the moment in the past when the 

market behavior was most similar to the current one and would 

prescribe to invest all money into the financial asset which had the 

highest rate of return in that “similar” situation. However, it is not 

clear what “similarity measure” to use, and the resulting invest- 

ment strategy may contradict the diversification principle. There 

are other objections for the use of direct data-based decision mak- 

ing in portfolio selection: 

(i) Information such as recent market trends and news about par- 

ticular companies may provide valuable insights for selecting a 

financial portfolio. 

(ii) The future may have little in common with the past, for in- 

stance, due to unique events such as BREXIT. 

(iii) New financial assets lack historical data, but it is unlikely that 

agents would view stocks, say, of a new bank and a startup IT 

company similarly. 

However, incorporating news and other non-quantitative 

information, e.g. a recent hire of a highly regarded CEO, into a 

mathematical model requires human participation and is, there- 

fore, expensive and slow. In contrast, calibrating stochastic mod- 

els based only on historical data can be fully automated and per- 

formed in milliseconds, which is particularly valuable for high- 

frequency trading. Thus, if the choice of optimal portfolio is based 

on some uncertainty modeling, which in turn uses historical data 

only, then the uncertainty modeling stage could be omitted, and 

decisions could be made based on data directly . 

The contribution and organization of this work are as fol- 

lows. Section 2 introduces the notion of time profile and 

discusses numerical representation of time series. Section 3 intro- 

duces intertemporal principles of rational choice. Section 4 reinter- 

prets the mean-variance and maxmin utility analyses in the con- 

text of direct data-based decision making. Section 5 concludes the 

work. Appendix A contains proofs of key results in Section 3 and 

Appendix B provides an axiomatic foundation for a data-based 

analogue of the EUT. 

2. Time profiles and numerical representation of time series 

Let T = { s 1 , . . . , s T } be a finite set of discrete time moments 

s 1 < · · · < s T in the past, and let x 1 , . . . , x T be corresponding rates 

of return of some financial asset. Since x 1 , . . . , x T encode a time 

structure and are not realizations of i.i.d. r.v.’s, the agent would un- 

likely view x 1 , . . . , x T as equally valuable data and may assign them 

corresponding weights q 1 , . . . , q T of historical data “depreciation ” to 

be collectively referred to as time profile Q . For example, the agent 

may postulate that ratio q t /q t+1 is a constant q ∈ (0, 1] independent 

of t , which implies that 

q t = q T q 
T −t , t = 1 , . . . , T . (3) 

Alternatively, q 1 , . . . , q T can be chosen to be proportional to the 

(normalized) autocorrelation profile of the asset—if for some time 

2 In psychology, Gorban, Rossiyev, and Dorrer (1995) proposed a neural-network- 

based approach for making recommendations based on the questionnaire data 

directly that avoids intermediate stage of patient descriptions in terms of “measure- 

ments of an individuality”. 
3 Gilboa and Schmeidler (1995) argued that in a search for a nanny for their child, 

a couple faces a lot of uncertainty about how each candidate would perform and 

can hardly define “states of the world” that would adequately model the situation 

not to mention accurately forecasting of probabilities of each state. 
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