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1. INTRODUCTION

Optimal control of discrete time stochastic systems can be
addressed via the dynamic programming (DP) (Bellman,
1957) principle of optimality. For an infinite horizon aver-
age or discounted cost problem, the optimal cost function
and control policy can be computed as the fixed point of
the so-called dynamic programming operator. In general,
computing this fixed point is challenging and thus, several
approximate approaches based on the DP principle of
optimality have been developed.

An alternative approach to solving stochastic control
problems is linear programming (LP) (Puterman, 2009;
Hernández-Lerma and Lasserre, 1996). If the control and
input spaces are uncountable, the corresponding LP is
infinite dimensional (inf-LP). In the primal form of this
LP, the optimization variable is the occupation measure,
which measures infinite horizon occupancy of state and
inputs in each Borel subset of the product state input
space. An optimal policy may be derived from the optimal
occupation measure, while the optimal value function is
the optimizer of the dual of this LP.

In addition to providing an elegant alternative formula-
tion of the optimality conditions for a stochastic control
solution, in the LP approach constraints have a natural
interpretation. By properly constraining the occupation
measure, one can ensure probabilistic constraints on the
state trajectory or can ensure bounds on multiple objec-
tives. Such formulations of constrained stochastic control
were considered in (Borkar, 1994; Feinberg and Shwartz,
1996; Altman, 1999; Hernández-Lerma and González-
Hernández, 2000; Hernández-Lerma et al., 2003).
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The inf-LP formulation is in general computationally in-
tractable. For problems with polynomial data, this inf-
LP can be approximated via a sequence of semidefinite
programs (SDPs) (Savorgnan et al., 2009; Summers et al.,
2013). These recent works are among the few that explore
the inf-LP approach for computation of optimal value
function and policies in a stochastic control problem.

The abstract inf-LP work has not attempted to establish
clear connections with the well known, computationally
tractable Linear Matrix Inequality (LMI) formulations
of optimal control. In particular, for a stochastic linear
system with quadratic cost (LQG), one can formulate the
so-called Riccati LMI to find the optimal value function
of the LQG problem (Boyd et al., 1994; Balakrishnan
and Vandenberghe, 2003). Similarly, the well known LMI
formulations have not attempted to show how these results
can be derived from a more general approach to stochastic
optimal control, namely the inf-LP approach.

In this work, we establish the connection between the inf-
LP approach and the well-known Riccati LMIs for LQG
problems. This inf-LP in general, includes infinitely many
constraints on the occupation measure. The relaxation
of these constraints to moments up to order two of the
occupation measure and taking the dual of this problem
results in the well-known Riccati LMI solution approaches.
Since the variables in the relaxation of primal inf-LP
are discounted moments of the state and input, moment
constraints or certain class of chance constraints can be
naturally encoded in the inf-LP formulation.

Our paper is organized as follows. In Section 2 we re-
view the inf-LP approach to discrete-time infinite horizon
discounted stochastic control. In Section 3 we apply the
approach to LQG problems. In Section 4 we provide nu-
merical case studies. In Section 5 we summarize the results.
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Hernández, 2000; Hernández-Lerma et al., 2003).

� This research is partially supported by M. Kamgarpour’s Euro-
pean Union ERC Starting Grant, CONENE and by T. Summers’
the US National Science Foundation under grant CNS-1566127.

The inf-LP formulation is in general computationally in-
tractable. For problems with polynomial data, this inf-
LP can be approximated via a sequence of semidefinite
programs (SDPs) (Savorgnan et al., 2009; Summers et al.,
2013). These recent works are among the few that explore
the inf-LP approach for computation of optimal value
function and policies in a stochastic control problem.

The abstract inf-LP work has not attempted to establish
clear connections with the well known, computationally
tractable Linear Matrix Inequality (LMI) formulations
of optimal control. In particular, for a stochastic linear
system with quadratic cost (LQG), one can formulate the
so-called Riccati LMI to find the optimal value function
of the LQG problem (Boyd et al., 1994; Balakrishnan
and Vandenberghe, 2003). Similarly, the well known LMI
formulations have not attempted to show how these results
can be derived from a more general approach to stochastic
optimal control, namely the inf-LP approach.

In this work, we establish the connection between the inf-
LP approach and the well-known Riccati LMIs for LQG
problems. This inf-LP in general, includes infinitely many
constraints on the occupation measure. The relaxation
of these constraints to moments up to order two of the
occupation measure and taking the dual of this problem
results in the well-known Riccati LMI solution approaches.
Since the variables in the relaxation of primal inf-LP
are discounted moments of the state and input, moment
constraints or certain class of chance constraints can be
naturally encoded in the inf-LP formulation.

Our paper is organized as follows. In Section 2 we re-
view the inf-LP approach to discrete-time infinite horizon
discounted stochastic control. In Section 3 we apply the
approach to LQG problems. In Section 4 we provide nu-
merical case studies. In Section 5 we summarize the results.

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 6337

On infinite dimensional linear programming
approach to stochastic control �

Maryam Kamgarpour ∗ Tyler Summers ∗∗

∗ Automatic Control Laboratory, ETH Zürich, Switzerland
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2. INF-LP APPROACH TO STOCHASTIC CONTROL

Consider the discrete-time stochastic system

xt+1 ∼ τ(Bx|xt, ut), (1)

where xt ∈ X, ut ∈ U , and τ(.|x, u) is a stochastic kernel.
It assigns a probability distribution to Bx ∈ B(X) given x
and u, where B(X) is the set of Borel subsets of X. The
stochastic control problem is defined by

min
π∈Π

Eπ
ν0

∞∑
t=0

αtc0(xt, ut). (2)

Above, c0 : X×U → R+ is the running cost and α ∈ (0, 1)
is a discount factor, ν0 is an initial state distribution.
We consider randomized policies π ∈ Π, where Π is the
set of probability measures on U given X. That is, for
each x ∈ X, π(x) gives a probability distribution on the
input space U . The expectation E is with respect to the
probability measure induced by ν0, π and τ .

The solution to the stochastic control problem above can
be characterized as the solution of an infinite dimensional
linear program (inf-LP). To present this inf-LP, we first
define the infinite dimensional optimization spaces for the
primal and dual LPs. Define the weight functions

w(x, u) = ε+ c0(x, u), w̃(x) = min
u∈U

w(x, u), (3)

where ε > 0 so that the weights are bounded away
from zero. Let F(X × U),F(X) denote the space of real
valued measurable functions with bounded w, w̃-norms,
respectively. That is, for f ∈ F(X × U), f̃ ∈ F(X):

sup
(x,u)

|f(x, u)|
w(x, u)

< ∞, sup
x

|f̃(x)|
w̃(x)

< ∞.

Let M(X ×U),M(X) denote the space of measures with
finite w, w̃-variations, respectively. That is, for µ ∈ M(X×
U), µ̃ ∈ M(X):∫

X×U

wdµ < ∞,

∫

X

w̃dµ̃ < ∞. (4)

Define the linear map T : M(X × U) → M(X) as:

[Tµ](B) = µ̃(B)− α

∫

X×U

τ(B|x, u)µ(dx, du), (5)

where µ̃(B) := µ(B,U) and B ∈ B(X). Analogously,
define the linear map T ∗ : F(X) → F(X × U) as:

[T ∗v] (x, u) = v(x)− α

∫

X

τ(dy|x, u)v(y).

Note that the second term above
∫
X
τ(dy|x, u)v(y), is the

expectation of the function v under the stochastic kernel
τ . One can verify that T and T ∗ are adjoint operators:

< T ∗v, µ >X×U =< v, Tµ >X ,

where the bilinear maps are given by:

< c, µ >X×U =

∫

X×U

c(x, u)µ(dx, du),

< v, ν >X =

∫

X

v(x)ν(dx).

In the remainder, for simplicity, we drop the subscript of
< . , . > since the space is clear from the context. To
formulate the inf-LP corresponding to stochastic control,
we need the following standard assumptions (Hernández-
Lerma and Lasserre, 1996).

Assumption 1.

(a) The cost c0 is lower semi-continuous and inf-compact,
that is, for every x ∈ X, r ∈ R, the set {u ∈
U | c0(x, u) ≤ r} is non-empty and compact.

(b) The stochastic kernel τ is weakly continuous.
(c) supX×U

∫
X
w̃(y)τ(dy|x, u)/w(x, u) < ∞.

(d) ν0 ∈ M+(X).

Let M+(X × U) ⊂ M(X × U) denote the cone of non-
negative measures. For ν0 ∈ M+(X), the constraint on
µ ∈ M(X × U), denoted by ν0 − Tµ = 0 refers to

ν0(Bx)− [Tµ](Bx) = 0, ∀Bx ∈ B(X). (6)

Theorem 1. The stochastic control problem (1), (2) can be
equivalently formulated as the following inf-LP:

min
µ∈M+(K)

< c0, µ > (P-SC)

s.t. ν0 − Tµ = 0. (7)

We summarize the idea of the proof and refer the readers to
(Hernández-Lerma and Lasserre, 1996) for details. Given
a policy π ∈ Π, one can define µ ∈ M+(X × U) as

µ(Bx, Bu) =

∞∑
t=0

αtPπ
ν0
{(xt, ut) ∈ (Bx, Bu)}, (8)

where Bx ∈ B(X), Bu ∈ B(U). This measure corresponds
to discounted probability of (xt, ut) being in any Borel
subset of X × U and is referred to as the occupation
measure. It can be verified that the occupation measure
satisfies ν0−Tµ = 0. Furthermore, given any µ ∈ M+(X×
U), there exists a policy ϕ ∈ Π, satisfying

µ(Bx, Bu) =

∫

Bx

ϕ(Bu|x)µ̃(dx), (9)

for all Bx ∈ B(X), Bu ∈ B(U) [Proposition D.8(a) in
(Hernández-Lerma and Lasserre, 1996)]. It can be shown
that the cost (2) corresponding to the policy ϕ is

Eϕ
ν0

∞∑
t=0

αtc0(xt, ut) =< c0, µ > . (10)

Putting the above results together, the problem of finding
the optimal policy for (2) can be equivalently formulated
as finding a measure minimizing (10) subject to (7).

Whereas the inf-LP above provides the optimal occupation
measure and the optimal policy for the stochastic control
problem, the dual of this inf-LP can be used to find the
optimal value function. Furthermore, the duality gap is
zero (Hernández-Lerma and Lasserre, 1996).

To define this dual inf-LP, let the constraint on v ∈ F(X),
denoted by c0 − T ∗v ≥ 0 refer to

c0(x, u)− [T ∗v](x, u) ≥ 0, ∀(x, u) ∈ X × U. (11)

The dual inf-LP is given by:

max
v∈F(X)

< v, ν0 > (D-SC)

s.t. c0 − T ∗v ≥ 0. (12)

Remark. Constraint (12) is the Bellman inequality. In
particular, based on the Bellman principle of optimality, a
function v∗ is the optimal value function of the stochastic
control if and only if c0 − T ∗v = 0. Thus, the optimizer of
the above inf-LP satisfies the Bellman equality.
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to discounted probability of (xt, ut) being in any Borel
subset of X × U and is referred to as the occupation
measure. It can be verified that the occupation measure
satisfies ν0−Tµ = 0. Furthermore, given any µ ∈ M+(X×
U), there exists a policy ϕ ∈ Π, satisfying

µ(Bx, Bu) =

∫

Bx

ϕ(Bu|x)µ̃(dx), (9)

for all Bx ∈ B(X), Bu ∈ B(U) [Proposition D.8(a) in
(Hernández-Lerma and Lasserre, 1996)]. It can be shown
that the cost (2) corresponding to the policy ϕ is

Eϕ
ν0

∞∑
t=0

αtc0(xt, ut) =< c0, µ > . (10)

Putting the above results together, the problem of finding
the optimal policy for (2) can be equivalently formulated
as finding a measure minimizing (10) subject to (7).

Whereas the inf-LP above provides the optimal occupation
measure and the optimal policy for the stochastic control
problem, the dual of this inf-LP can be used to find the
optimal value function. Furthermore, the duality gap is
zero (Hernández-Lerma and Lasserre, 1996).

To define this dual inf-LP, let the constraint on v ∈ F(X),
denoted by c0 − T ∗v ≥ 0 refer to

c0(x, u)− [T ∗v](x, u) ≥ 0, ∀(x, u) ∈ X × U. (11)

The dual inf-LP is given by:

max
v∈F(X)

< v, ν0 > (D-SC)

s.t. c0 − T ∗v ≥ 0. (12)

Remark. Constraint (12) is the Bellman inequality. In
particular, based on the Bellman principle of optimality, a
function v∗ is the optimal value function of the stochastic
control if and only if c0 − T ∗v = 0. Thus, the optimizer of
the above inf-LP satisfies the Bellman equality.
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