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In this study, an exact algorithm, called the search-and-remove (SR) algorithm, is proposed to compute 

the Pareto frontier of biobjective mixed-integer linear programming problems. At each stage of the algo- 

rithm, efficient slices (all integer variables are fixed in a slice) are searched with the dichotomic search 

algorithm and found slices are recorded and excluded from the decision space with the help of Tabu 

constraints. The algorithm is also enhanced with lower and upper bounds, which are updated at each 

stage of the algorithm. The SR algorithm continues until it is proved that all efficient slices of the biob- 

jective mixed-integer linear programming (BOMILP) problem are found. The algorithm finally returns a 

set of potentially efficient slices including all efficient slices of the problem. Then, an upper envelope 

finding algorithm merges the Pareto frontiers of these slices to the Pareto frontier of the original prob- 

lem. A computational analysis is performed on several benchmark problems and the performance of the 

algorithm is compared with state of the art methods from the literature. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Mixed-integer linear programming problems (MILP) comprise a 

wide class of discrete optimization problems. In a MILP, if there 

are two conflicting objective functions, the problem turns into the 

BOMILP problem. 

When all integer variables of a BOMILP problem are fixed, a 

biobjective linear programming problem (BOLP) called the slice 

problem ( Belotti, Soylu, & Wiecek, 2013 ) is obtained. It is well- 

known in the literature that the Pareto frontier of a BOLP can easily 

be found with the parametric simplex algorithm ( Ehrgott, 2005 ) or 

the dichotomic search algorithm ( Aneja & Nair, 1979; Cohon, 1978 ). 

If any Pareto point of a slice problem contributes to the Pareto 

frontier of the BOMILP problem, then it is called an e fficient slice . 

Since the number of efficient slices can be of exponential in the 

size of the input (i.e., intractable), there is no chance for a poly- 

nomial time algorithm for BOMILP. A primitive algorithm would be 

to solve all slice problems of the BOMILP problem, obviously this 

requires the complete enumeration of the set of integer variables, 

and then finding the upper envelope (for maximization problems) 

of all resulting points. The aim of the SR algorithm is precisely 

to improve this primitive approach in such a way as to avoid this 

complete enumeration. 

E-mail address: bsoylu@erciyes.edu.tr 

Multiobjective MILP (MOMILP) problems are common in real 

life. Some examples are multiobjective hub-location ( Köksalan 

& Soylu, 2010 ), multiobjective hydro-thermal self-scheduling 

( Ahmadi, Aghaei, Shayanfar, & Rabiee, 2012 ), biobjective heat and 

power production planning ( Rong, Figueira, & Lahdelma, 2015 ), 

multiobjective energy planning ( Mavrotas, Diakoulaki, & Papayan- 

nakis, 1999 ) etc. Many MOMILP problems exist in the literature and 

classical algorithms such as the ε-constraint algorithm ( Haimes, 

Lasdon, & Wismer, 1971 ) have been mostly used for finding effi- 

cient solutions. However, these algorithms are only able to provide 

a subset of efficient solutions of MOMILP problems. 

The single objective MILP literature is vast in exact and in 

heuristic methods, however the MOMILP algorithms literature is 

relatively new. Decision space search algorithms such as branch- 

and-bound (BB) have been applied to MOMILP as well. One of the 

first attempts to develop a BB algorithm for MOMILP problems is 

by Mavrotas and Diakoulaki (1998, 2005) . Vincent, Seipp, Ruzika, 

Przybylski, and Gandibleux (2013) improved the BB algorithm of 

Mavrotas and Diakoulaki in terms of generation of the Pareto fron- 

tier. They also presented better bounds and branching strategies. 

Stidsen, Andersen, and Dammann (2014) proposed a biobjective 

BB algorithm, which can handle a subclass of biobjective mixed- 

binary linear programming (BOMBLP) problems, where continuous 

variables are only to be part of one of two objective functions. 

Belotti et al. (2013) presented the first general purpose BB algo- 

rithm for BOMILP problems. They also proposed improved fathom- 

ing rules to eliminate more nodes for decreasing the computation 
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time ( Belotti, Soylu, & Wiecek, 2016 ). Soylu and Yıldız (2015) have 

recently introduced a new tree based algorithm, called the local- 

branch-and bound algorithm, which uses the local branching con- 

cept of Fischetti and Lodi (2003) . 

Criterion space search algorithms have also been receiving 

growing attention in the literature. The first general purpose crite- 

rion space search algorithm for BOMILP problems was introduced 

by Boland, Charkhgard, and Savelsbergh (2015) . They developed 

a triangle splitting algorithm, which maintains a diverse set of 

Pareto points throughout the algorithm. Recently, Soylu and Yıldız 

(2016) presented the ε, T abu -constraint algorithm, which sequen- 

tially finds all Pareto line segments and points of BOMILP problems 

starting with one end point of the Pareto frontier. 

Particularly for finding the set of extreme Pareto points of 

MOMILP problems, Özpeynirci and Köksalan (2010) presented an 

algorithm based on dichotomic search and weight space decom- 

position. Przybylski, Gandibleux, and Ehrgott (2010) proposed an 

algorithm for finding the set of extreme Pareto points of multiob- 

jective integer linear programming (MOILP) problems. 

This paper proposes an exact algorithm for BOMILP problems. 

The motivation is that the Pareto frontier of BOMILP problems can 

be computed by considering Pareto frontiers of (BOLP) slice prob- 

lems and eliminating dominated points. Since BOMILP problems 

are in general not convex, finding all efficient slices is not easy. 

However, removing searched slices from the decision space makes 

it easier to find others. For this purpose, at each iteration efficient 

slices of the problem are searched with the dichotomic search al- 

gorithm. Before starting the next iteration, slices found are elim- 

inated from the search space with the help of Tabu constraints 

added to the problem. These search and remove iterations repeat 

until it is proved that all efficient slices of the problem are found. 

For this purpose, upper and lower bound sets are used. Obviously, 

tighter bound sets lead to earlier termination of the algorithm by 

reducing the number of performed iterations. As a performance 

improvement strategy, partitioning the objective space into several 

subregions and parallel processing of each subregion are suggested. 

In Section 2 , basic definitions and models are provided. In 

Section 3 , fundamental mechanisms of the algorithm are discussed. 

In Section 4 , the search-and-remove iterative framework is pro- 

posed for BOMILP problems. In Section 5 , computational results 

and performance comparisons are presented. Finally, the conclu- 

sion and further research directions are given in Section 6 . 

2. Basic definitions and models 

Readers may refer to Isermann (1974), Yu and Zeleny (1975), 

Naccache (1978), Steuer (1985) and Ehrgott (2005) for a detailed 

coverage of multiobjective optimization. 

The BOMILP problem can be formulated as follows: 

P : Max z 1 ( ̃  x , x ) = ˜ c T 1 ̃  x + c T 1 x 

Max z 2 ( ̃  x , x ) = ˜ c T 2 ̃  x + c T 2 x 
Sub ject to ( ̃  x , x ) ∈ X 

where the set X := { ( ̃  x , x ) ∈ R 

p 
+ × Z 

n −p 
+ : ˜ A ̃  x + A x � b } is the set 

of feasible solutions defined in the decision space. The vectors 

˜ c 
1 
, ˜ c 

2 
∈ R 

p and c 
1 
, c 

2 
∈ R 

n −p are cost vectors, the matrices ˜ A ∈ 

R 

m ×p , A ∈ R 

m × ( n −p ) are coefficient matrices of m constraints, and 

b ∈ R 

m is the right-hand side vector. There are p continuous and 

n − p integer variables. It is assumed that each integer variable x i is 

bounded, i.e. 0 ≤ l i ≤ x i ≤ u i < + ∞ for i = 1 , 2 , . . . . . . , n − p where 

l i and u i are lower and upper bound values, respectively. It is 

also assumed that each continuous variable ˜ x i is bounded, i.e. 

0 ≤ ˜ x i ≤ u i < + ∞ for i = 1 , 2 , . . . . . . , p. Here, the biobjective inte- 

ger programming (BOIP) problem, where p = 0 , and the biobjective 

linear programming (BOLP) problem, where p = n , are considered 

as special classes of the BOMILP problem. The image of the set 

X is Y := z(X ) := { y ∈ R 

2 : y = z( ̃  x , x ) for some ( ̃  x , x ) ∈ X } called 

the set of attainable vectors defined in the objective/criterion space 

R 

2 . Here y = z( ̃  x , x ) where z = ( z 1 , z 2 ) . 

Definition 1. A feasible solution ( ̃  x ∗, x ∗) ∈ X is said to be efficient 

for problem P if and only if there is no ( ̃  x , x ) ∈ X such that 

z( ̃  x , x ) ≥ z( ̃  x ∗, x ∗) . If ( ̃  x ∗, x ∗) ∈ X is efficient, then z( ̃  x ∗, x ∗) is called 

a Pareto point . If ( ̃  x 1 , x 1 ), ( ̃  x 2 , x 2 ) ∈ X and z( ̃  x 1 , x 1 ) ≥ z( ̃  x 2 , x 2 ) , then 

it is said that ( ̃  x 1 , x 1 ) dominates ( ̃  x 2 , x 2 ), and z( ̃  x 1 , x 1 ) dominates 

z( ̃  x 2 , x 2 ) . The set of all efficient solutions ( ̃  x ∗, x ∗) ∈ X is denoted by 

X E . The set of all Pareto points z( ̃  x ∗, x ∗) ∈ Y for some ( ̃  x ∗, x ∗) ∈ X E is 

denoted by Y N , also referred to as the Pareto frontier . 

Given two vectors y 1 , y 2 ∈ R 

2 , the following notation is used: 

y 1 � y 2 if y 1 
k 

� y 2 
k 

for all k = 1 , 2 

y 1 ≥ y 2 if y 1 � y 2 and y 1 � = y 2 

y 1 > y 2 if y 1 
k 

> y 2 
k 

for all k = 1 , 2 . 

The set R 

2 
� 

is defined as R 

2 
� 

:= { y ∈ R 

2 : y � 0 } , and sets 

R 

2 
> , R 

2 ≥, R 

2 
< , R 

2 ≤, R 

2 
� 

are defined similarly. Let S be an ar- 

bitrary set. Then, the set S � is defined as S � = S + R 

2 
� 

:= 

{ s + y : s ∈ S, y ∈ R 

2 
� 

} , and sets S > , S ≥, S < , S ≤, S � are defined simi- 

larly. 

Definition 2. A set S ⊂ R 

2 is called connected if there are no open 

sets O 1 , O 2 such that S ⊂ O 1 ∪ O 2 , S ∩ O 1 � = ∅ , S ∩ O 2 � = ∅ , S ∩ O 1 ∩ 

O 2 = ∅ . 
Definition 3. A feasible solution ( ̃  x ′ , x ′ ) ∈ X is said to be weakly 

efficient for problem P if and only if there is no ( ̃  x , x ) ∈ X such 

that z( ̃  x , x ) > z( ̃  x ′ , x ′ ) . Then the point y ′ = z( ̃  x ′ , x ′ ) is called a weak 

Pareto point . 

Definition 4. Let ( ̃  x a , x a ) ∈ X E . If there is some λ ∈ 

( 0 , 1 ) such that ( ̃  x a , x a ) ∈ X E is an optimal solution of 

ma x ( ̃ x , x ) ∈ X { λz 1 ( ̃  x , x ) + ( 1 − λ) z 2 ( ̃  x , x ) } , then ( ̃  x a , x a ) ∈ X E is called a 

supported efficient solution and y a = z( ̃  x a , x a ) is called a supported 

Pareto point . Otherwise, ( ̃  x a , x a ) ∈ X E is called a nonsupported ef- 

ficient solution and y a = z( ̃  x a , x a ) is called a nonsupported Pareto 

point . 

Definition 5. A Pareto point y a = z( ̃  x a , x a ) ∈ Y N is called an extreme 

supported Pareto (ExSP) point if y a is an extreme point of Con v (Y ) . 
The set Y XN denotes the set of ExSP points. 

Definition 6. Let Y XN = { y 1 , y 2 , . . . , y h } such that y 1 
1 

< y 2 
1 

< . . . < 

y h 
1 
. Points y j and y j+1 , ∀ j = 1 , 2 , . . . , h − 1 are called adjacent . 

Definition 7. Let y a , y b ∈ Y be two attainable points such that 

y a 
1 

< y b 
1 

and y a 
2 

> y b 
2 
. The point y̌ = ( y a 

1 
, y b 

2 
) is called the local nadir 

point with respect to y a and y b . The point ˇ̌y = ( ̌̌y 1 , ̌̌y 2 ) given by 
ˇ̌y k = min y∈ Y N y k for k = 1 , 2 is called the nadir point . The point 

y I = ( y I 1 , y 
I 
2 ) given by y I 

k 
= max { z k ( ̃  x , x ) : ( ̃  x , x ) ∈ X } for k = 1 , 2 is 

called the ideal point . 

Given a weight λ ∈ ( 0 , 1 ) the single objective weighted-sum 

problem P λ is defined as ma x ( ̃ x , x ) ∈ X { λz 1 ( ̃  x , x ) + ( 1 − λ) z 2 ( ̃  x , x ) } . 
A slice problem of P is a BOLP obtained by fixing the integer 

variables of P and defined as follows ( Belotti et al., 2013 ): 

P 
(
x̄ j 

)
: Max z 1 ( ̃  x ) = ˜ c T 1 ̃  x + c T 1 ̄x 

j 

Max z 2 ( ̃  x ) = ˜ c T 2 ̃  x + c T 2 ̄x 
j 

Sub ject to ̃  x ∈ X 

(
x̄ j 

)

where X( ̄x j ) := { ˜ x ∈ R 

p 
+ : ˜ A ̃  x � b − A ̄x j for a given x̄ j ∈ Z 

n −p 
+ } de- 

fines a slice of the set X . Here the x̄ j vector refers to 

integer values defined priorily. The set Y ( ̄x j ) := z( X( ̄x j ) ) := 
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