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a b s t r a c t 

Based on the binding constraint indices of the optimal solution to the linear programming (LP) model, a 

feasible system of linear equations can be formed. Because an interval linear programming (ILP) model 

is the union of numerous LP models, an interval linear equations system (ILES) can be formed, which 

is the union of these conventional systems. Hence, a new algorithm is introduced in which an arbitrary 

characteristic model of the ILP model is chosen and solved. The set of indices of its binding constraints is 

then obtained. This set is used to form and solve an ILES using the enclosure method. If all the compo- 

nents of the interval solutions to this system are strictly non-negative, the optimal solution set (OSS) of 

the ILP model is determined as the subscription of the zone created by reversing the signs of the binding 

constraints of the worst model and the binding constraints of the best model. The solutions to several 

problems obtained by the new algorithm and a Monte Carlo simulation are compared. The proposed al- 

gorithm is applicable to large-scale problems. To this end, an ILP model with 270 constraints and 270 

variables is solved. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Many real world system parameters are inexact and are deter- 

mined as interval numbers. Therefore, interval linear programming 

(ILP) is an efficient method to characterize inexact parameters in 

decision-making problems. Recently, obtaining the optimal solution 

set (OSS) and the optimal range of the objective values of the ILP 

problem has become important to researchers. Allahdadi and Mish- 

mast Nehi (2013) determined the OSS of the ILP model from the 

worst and best model constraints when all of the components of 

the optimal solutions to the ILP model are strictly non-negative. 

In fact, by assuming the positivity of all of the components of 

the feasible point of the best model, if the number of constraints 

and variables are equal, the exact OSS of the ILP model is par- 

allel to the region that is the subscription of the feasible zone 

of the best model and the feasible zone created by reversing the 

inequality signs of the worst model constraints. Several methods 

have been proposed to solve the ILP model. Some of the methods 

transform the ILP model into two sub-models ( Allahdadi, Mish- 

mast Nehi, Ashayerinasab, & Javanmard, 2016; Fan & Huang, 2012; 

Huang, Baetz, & Patry, 1995; Huang & Moore, 1993; Lu, Cao, Wang, 

Fan, & He, 2014; Tong, 1994; Wang & Huang, 2014; Zhou, Huang, 
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Chen, & Guo, 2009 ). The solution area of these methods is formed 

by solving these sub-models and obtaining their optimal solutions. 

One solution, the BWC method ( Tong, 1994 ), obtains the largest in- 

terval of the objective function values. In addition, some of these 

methods, such as a novel ILP ( Huang & Moore, 1993 ), a two-step 

method (TSM) ( Huang et al., 1995 ), and another solution (SOM-2) 

( Lu et al., 2014 ) have been proposed. However, part of the solu- 

tion area of these methods may be infeasible. Several techniques 

have been developed to remove the infeasible part of the solution 

area of these methods, such as the modified ILP (MILP) ( Zhou et al., 

2009 ), improved TSM (ITSM) ( Wang & Huang, 2014 ), and robust 

TSM (RTSM) ( Fan & Huang, 2012 ). Allahdadi et al. (2016) , intro- 

duced two improvement methods, namely, IMILP and IILP, to delete 

the non-optimal solutions to the solution areas of the MILP and ILP 

methods, respectively. 

An arbitrary point is a feasible solution to the ILP model if it 

belongs to the feasible zone of the best model, and it is optimal 

if it is an optimal solution to an arbitrary characteristic problem 

of the ILP model. If the optimal solution to a linear programming 

(LP) model exists, then it lies in the extreme point set or bounds of 

the feasible region of the LP model. In fact, the optimal solution to 

the LP problem is the solution to a linear equations system (LES), 

whose equations are the binding constraints of the LP model. By 

considering the variables (such as dual variables) corresponding to 

the binding constraints of the LP model and by multiplying them 

in the columns of the technological matrix, an LES can be formed 
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(similar to the dual problem constraints). In the optimal solution to 

an LP model, the objective gradient lies in the cone created by the 

gradients of the binding constraints. This optimality qualification is 

equivalent to the strong feasibility of the LES presented above. An 

ILP model is the union of numerous characteristic models, which 

are LP models. Hence, an interval linear equations system (ILES) 

can be formed, which is the union of the conventional systems de- 

scribed above. 

In this article, the exact OSS of the ILP model will be ob- 

tained. A new algorithm is introduced, and an arbitrary character- 

istic problem of the ILP problem is chosen and solved. The set of 

indices of its binding constraints is then obtained. With this index 

set, an ILES is formed and solved using the enclosure method. If 

all of the components of the interval solutions to this system are 

strictly nonnegative, the OSS of the ILP model can be obtained. 

This algorithm has several advantages. (1) It obtains the exact 

OSS of the general ILP model when the related ILES is strongly fea- 

sible. (2) The solution process of this algorithm is not complex. (3) 

The algorithm obtains all of the optimal solutions to the ILP model 

when the solution set of the related ILES is strictly nonnegative, 

whereas the solution area of previous solution methods only can 

obtain some results. (4) The OSS obtained in Allahdadi and Mish- 

mast Nehi (2013) is expressed for special cases of the ILP model, 

but this algorithm obtains the exact OSS of the ILP model in the 

general case. Hladik (2016) presented a discussion of the topolog- 

ical affections of the robust OSS, and several definitions related to 

interval numbers and a new method for solving the interval bilevel 

LP problem were studied by Ren, Wang, and Xue (2017) . Several es- 

sential definitions and theorems are expressed and proved to illus- 

trate the algorithm described above. In addition, numerical exam- 

ples are introduced to study the method. Finally, the solutions ob- 

tained using the algorithm and the Monte Carlo simulation (MCS) 

method are compared to illustrate the applicability of the algo- 

rithm. A large-scale ILP model with 270 constraints and 270 vari- 

ables is studied to demonstrate that the proposed algorithm is ap- 

plicable. 

2. Preliminaries 

An interval number a ± is defined as [ a −, a + ] , where a − ≤ a + . 
If a − = a + , then a ± will degenerate, and the interval number a ±

transforms into a crisp number. 

Definition 2.1. Suppose that, A 

− = (a −
i j 
) , A 

+ = (a + 
i j 
) ∈ R 

m ×n , m, n ∈ 

N are two matrices that for all i, j; (a −
i j 
) ≤ (a + 

i j 
) . Thus, an interval 

matrix is given as follows: 

A 

± = [ A 

−, A 

+ ] = { A ∈ R 

m ×n | A 

− ≤ A ≤ A 

+ } . 

The radius and centre of A 

± are �A ± = 

1 
2 (A 

+ − A 

−) and A 

c = 

1 
2 (A 

− + A 

+ ) , respectively. Thus, A 

± = [ A 

−, A 

+ ] = [ A 

c − �A ± , A 

c + 

�A ± ] . The union of all m × n interval matrices is denoted by IR 

m ×n . 

An interval vector v ± is introduced as the set v ± = { v | v − ≤ v ≤
v + } , where v −, v + ∈ R 

n are crisp vectors ( Fiedler, Nedoma, Ramik, 

Rohn, & Zimmermann, 2006 ). 

Definition 2.2. An interval number a ± is non-negative (positive) if 

a − ≥ 0 (a − > 0) and is non-positive (negative) if a + ≤ 0 (a + < 0) . 

A general form of the ILP model is defined as follows: 

Minimization Z ± = 

n ∑ 

j=1 

c ±
j 

x ±
j 

subject to: 

n ∑ 

j=1 

a ±
i j 

x ±
j 

≥ b ±
i 
, i = 1 , . . . , m, 

x ±
j 

≥ 0 , j = 1 , · · · , n. 

(1) 

In model (1) by considering certain values through interval param- 

eters, a conventional LP model that is called a characteristic model 

is obtained as follows: 

Minimization Z o = 

n ∑ 

j=1 

c o j x j 

subject to: 

n ∑ 

j=1 

a o i j x j ≥ b o i , i = 1 , . . . , m, 

x j ≥ 0 , j = 1 , · · · , n. 

(2) 

where c o 
j 
∈ c ±

j 
= [ c −

j 
, c + 

j 
] , a o 

i j 
∈ a ±

i j 
= [ a −

i j 
, a + 

i j 
] , and b o 

i 
∈ b ±

i 
= [ b −

i 
, b + 

i 
] . 

Definition 2.3. An interval hyperplane H 

± in IR 

n is defined by the 

set { x ± : p 

±x ± = k ±} , where p 

± is an interval vector in IR 

n , the 

interval vector p 

± does not consist of the zero vector, and k ± is an 

interval number. A set H = { x : px = k } ∈ H 

± where p ∈ p 

±, k ∈ k ±, 

is called a characteristic hyperplane. An interval hyperplane H 

± is 

the union of all conventional hyperplanes H . 

Definition 2.4. A zone ˆ X of the feasible region of the ILP model 

(1) is called an extreme zone if each of its points is an extreme 

point of a characteristic model of the ILP model (1) . In other words, 

a zone ˆ X is an extreme zone if it is the intersection of some n 

linearly independent defining interval hyperplanes of the feasible 

region of the ILP model (1) . 

Theorem 2.1. Tong (1994) In the ILP model (1) , the largest and 

smallest feasible regions are 
∑ n 

j=1 a 
+ 
i j 

x j ≥ b −
i 
, ∀ i, x j ≥ 0 , ∀ j and ∑ n 

j=1 a 
−
i j 

x j ≥ b + 
i 
, ∀ i, x j ≥ 0 , ∀ j, respectively. 

Definition 2.5. A point ˆ x = ( ̂  x 1 , ̂  x 2 , · · · , ̂  x n ) is said to be a feasible 

point of the ILP model (1) if 
∑ n 

j=1 a 
+ 
i j ̂

 x j ≥ b −
i 
, ∀ i, and ˆ x j ≥ 0 , ∀ j. 

Theorem 2.2. Rohn (1993) If the set Ax = b , where A ∈ IR 

n ×n and 

b ∈ IR 

n is solved, the interval vector r is obtained by the enclosure 

method, then for i = 1 , · · · , n : 

r −
i 

= min 

{ 

−x 

∗
i + (x 

c 
i + | x 

c 
i | ) M ii , 

1 

2 M ii − 1 

(−x 

∗
i + (x 

c 
i + | x 

c 
i | ) M ii ) 

} 

, 

r + 
i 

= max 

{ 

x 

∗
i + (x 

c 
i − | x 

c 
i | ) M ii , 

1 

2 M ii − 1 

( x 

∗
i + (x 

c 
i − | x 

c 
i | ) M ii ) 

} 

, 

where M = (I − | (A 

c ) −1 |� A ) 
−1 , x c = (A 

c ) −1 b c , x ∗ = M(| x c | + 

| (A 

c ) −1 |� b ) , and A 

c is a non-singular matrix and ρ(| (A 

c ) −1 |� A ) < 1 . 

3. Review of previous solution methods 

The following subsections present a review of previous solu- 

tion methods. First, the BWC method is reviewed, and the best and 

worst models are examined to determine the exact OSS of the ILP 

model when all of the components of the feasible solution are pos- 

itive. Then, an introduction to various solution methods and their 

solution areas is presented. 

3.1. BWC method 

Tong transformed the ILP problem (1) into worst and best sub- 

problems, which are summarized as follows ( Tong, 1994 ): 
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