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a b s t r a c t

This paper proposes a linear programming approach for stabilization of positiveMarkovian
jump systems (PMJSs) with a saturated single input. The proposed approach first derives
a sufficient condition for stabilization of PMJSs with input saturation based on the linear
co-positive Lyapunov function. By introducing an intermediate scalarwhose absolute value
is less than the absolute value of product of nonnegative vector of the linear co-positive
Lyapunov function and inputmatrix and constructing a special form of the controller gains,
this approach obtains a modified condition applicable for the linear programming. Finally,
four numerical examples show that the proposed approach gives the larger domain of
attraction than the existing approach based on the quadratic Lyapunov function.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Physical systems often have variables that include nonnegative property: networks of reservoirs, industrial processes in-
volving chemical reactors, the population of human and heat exchangers [1]. Such systems are indicated as positive systems,
whose state variables take only nonnegative values for any nonnegative initial condition. More recently, many applications
of positive switched systems can be found in practice: virusmutation treatment [2], turbofan engines [3] formation flying [4]
and other areas. Consequently, the positive switched systems have become subjects of research interest [5–7]. For positive
systems, it has been shown that the linear co-positive Lyapunov function is more valid for discussing the control synthesis
than traditional quadratic Lyapunov functions. Accordingly, the linear programming technique is more efficient than the
linear matrix inequality (LMI) technique because the number of decision variables in the linear programming conditions is
usually far fewer than that in the LMI conditions [8–14].

In themeantime, Markovian jump systems (MJSs) can bemodeled by a set of linear systemswithmode transition subject
to aMarkov chain (orMarkov stochastic process). Over the past ten years,MJSs have gained a substantial amount of attention
due to the fact that they are commonly regarded as suitable mathematical models to describe dynamic systems subject
to random abrupt variations in their structure or parameters. For this reason, MJSs have been rapidly developed in many
fields: networked control systems [15], economic systems [16], anti-windup design [17] and so on. Moreover, positive
Markovian jump systems (PMJSs) are a special class of MJSs which provide a unified framework for mathematical modeling
of many dynamic systems such as virus mutation treatment [2], turbofan engines [18,3] and network employing TCP in
communication systems [19,20]. The stability analysis of PMJSs also has been studied [8,5,21]. These researches illustrate
the necessity of the theoretical findings PMJSs.

On the other hand, input saturation often occurs in practical engineering, which gives a clipped control input that is
hard-limited by the peak output of an actuator. Since input saturation may deteriorate the performance of systems, it is
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necessary to take input saturation into account in stabilization of systems, so that the control synthesis for systems with
input saturation have been investigated by many researchers [22–24]. Especially, the authors of [24] considered the LMI
approach for stabilization of PMJSs subject to actuator saturation by using the traditional quadratic Lyapunov function. As
previously mentioned, the LMI-based strategy may be less effective than the linear programming based strategy. Therefore,
it is theoretically meaningful to consider the linear programming approach for stabilization of PMJSs with input saturation
by using the linear co-positive Lyapunov function. However, stabilization of PMJSs with input saturation by using the linear
co-positive Lyapunov function yields the mutually coupled decision variables, which results in that the condition is not
applicable for the linear programming. This difficulty motivates us to carry out this study.

This paper proposes a linear programming approach for stabilization of positiveMarkovian jump systemswith a saturated
single input. The proposed approach first derives the sufficient conditions for stabilization of PMJSs with input saturation
based on the linear co-positive Lyapunov function. Asmentioned earlier, the directly obtained stabilization conditions are not
applicable for the linear programming. By introducing an intermediate scalar whose absolute value is less than the absolute
value of product of nonnegative vector of the linear co-positive Lyapunov function and input matrix and constructing a
special formof the controller gains, this approach obtains amodified condition applicable for the linear programming. Finally,
four numerical examples show that the proposed approach gives the larger domain of attraction than the existing approach
based on the quadratic Lyapunov function [24].

The notations used in this paper are fairly standard. For x ∈ Rn, xT means the transpose of x. In means the n × n
identity matrix. N+r = {1, 2, . . . , r}, where r is positive integer. Given a probability space (Ω, Υ , Θ), Ω represents the
sample space, Υ is the algebra of events, and Θ is the probability measure defined on Υ . A ≻ 0, which indicates that
all the elements of A are positive, and A ≻ B, which means that A − B ≻ 0. A matrix A is called a Metzler matrix if its
off-diagonal entries are nonnegative. For a vector v ∈ Rn, define ϵ(v) =

{
x ∈ Rn xTv < 1

}
. For a matrix A ∈ Rm×n, (A)pq is

used to indicate the entry in the pth row and qth column of the matrix A, where p ≤ m and q ≤ n. For a matrix H ∈ Rm×n,
L(H) =

{
x ∈ Rn

|hix| ≤ 1, i ∈ N+m
}
, hi denotes the ith row of H .

2. Problem statement

Given a probability space (Ω, Υ , Θ), consider a continuous-time positiveMarkovian jump systemswith input saturation
given by

ẋ(t) = A(rt )x(t)+ B(rt )sat(u(t)), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input. {r(t), t ≥ 0} is a continuous-time Markov process on the
probability space that takes the values in a finite set N+N = {1, 2, . . . ,N} and has the mode transition probabilities

Pr(rt+δt = j|rt = i) =
{

πijδt + o(δt) if j ̸= i,
1+ πiiδt + o(δt) otherwise, (2)

where δt > 0 and limδt→0(o(δt)/δt) = 0. πij is the transition rate from mode i at time t to mode j at time t + δt , which
satisfies πij ≥ 0, for j ̸= i and

∑N
j=1πij = 0. To simplify the notation, A(i) and B(i) denote the A(r(t) = i) and B(r(t) = i),

respectively. Further, for the vector σ =
[
σ1 · · · σm

]T
∈ Rm, the saturation operator sat(·) is defined as

[sat(σ )]k ≜

{ 1 σk ≥ 1,
σk |σk| < 1,
−1 σk ≤ −1,

(3)

where [sat(σ )]k is kth element of sat(σ ).

Definition 1. System (1) with u(t) ≡ 0 is said to be positive if for any initial condition x0 ⪰ 0, the corresponding trajectory
x(t) ⪰ 0 holds for all t > 0.

Lemma 1 ([25]). System (1) with u(t) ≡ 0 is positive if and only if A(i) is a Metzler matrix.

Lemma 2 (Cao et al. [26] and Hu and Lin [27]). Let u, uv
∈ Rm,

u = [u1 u2 · · · um]T , uv
=
[
uv
1 uv

2 · · · uv
m

]T
. (4)

Assume that |eTi u
v
| ≤ 1 for all i ∈ N+m , then

sat (u) ∈ Co
{
Dku+ D−k u

v k ∈ N+2m
}
, (5)

where ei is a unit vector with the ith nonzero entry, i.e., ei ≜ [0 · · · 1
ith

· · · 0]T , Dk denotes a diagonal matrix with all possible

combinations of 1 and 0 diagonal entries, D−k ≜ I − Dk, and Co is the convex hull.
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