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Abstract: In this paper we consider a network of processors aiming at cooperatively solving
linear programming problems subject to uncertainty. Each node only knows a common cost
function and its local uncertain constraint set. We propose a randomized, distributed algorithm
working under time-varying, asynchronous and directed communication topology. The algorithm
is based on a local computation and communication paradigm. At each communication round,
nodes perform two updates: (i) a verification in which they check—in a randomized setup—the
robust feasibility (and hence optimality) of the candidate optimal point, and (ii) an optimization
step in which they exchange their candidate bases (minimal sets of active constraints) with
neighbors and locally solve an optimization problem whose constraint set includes: a sampled
constraint violating the candidate optimal point (if it exists), agent’s current basis and the
collection of neighbor’s basis. As main result, we show that if a processor successfully performs
the verification step for a sufficient number of communication rounds, it can stop the algorithm
since a consensus has been reached. The common solution is—with high confidence—feasible
(and hence optimal) for the entire set of uncertainty except a subset having arbitrary small
probability measure. We show the effectiveness of the proposed distributed algorithm on a
multi-core platform in which the nodes communicate asynchronously.

Keywords: Distributed Optimization, Randomized Algorithms, Robust Linear Programming,
Optimization and control of large-scale network systems, Large scale optimization problems.

1. INTRODUCTION

Robust optimization plays an important role in several
areas such as estimation and control and has been widely
investigated. Its rich literature dates back to the 1950s,
see Ben-Tal and Nemirovski (2009) and references therein.
Very recently, there has been a renewed interest in this
topic in a parallel and/or distributed framework. In Lee
and Nedić (2013), a synchronous distributed random pro-
jection algorithm with almost sure convergence is proposed
for the case where each node has independent cost function
and (uncertain) constraint. Since the distributed algorithm
relies on extracting random samples from an uncertain
constraint set, several assumptions on random set, network
structure and agent weights are made to prove almost sure
convergence. The synchronization of update rule relies on
a central clock to coordinate the step size selection. To
circumvent this limitation the same authors in Lee and
Nedić (2016) present an asynchronous random projection
algorithm in which a gossip-based protocol is used to
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desynchronize the step size selection. The proposed algo-
rithms in (Lee and Nedić, 2013, 2016), require computing
projection onto the constraint set at each iteration which is
computationally demanding if the constraint set does not
have a simple structure such as half space or polyhedron.
In Carlone et al. (2014), a parallel/distributed scheme is
considered for solving an uncertain optimization problem
by means of the scenario approach (Calafiore and Campi,
2004). The scheme consists of extracting a number of sam-
ples from the uncertain set and assigning them to nodes in
a network. Each node is assigned a portion of the extracted
samples. Then, a variant of the constraints consensus al-
gorithm introduced in Notarstefano and Bullo (2011) is
used to solve the deterministic optimization problem. A
similar parallel framework for solving convex optimization
problems with one uncertain constraint via the scenario
approach is considered in You and Tempo (2016). In this
setup, the sampled optimization problem is solved in a
distributed way by using a primal-dual subgradient (resp.
random projection) algorithm over an undirected (resp.
directed) graph. We remark that in Carlone et al. (2014);
You and Tempo (2016), constraints and cost function of
all agents are identical. In Bürger et al. (2014), a cut-
ting plane consensus algorithm is introduced for solving
convex optimization problem where constraints are dis-
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and Nedić (2013), a synchronous distributed random pro-
jection algorithm with almost sure convergence is proposed
for the case where each node has independent cost function
and (uncertain) constraint. Since the distributed algorithm
relies on extracting random samples from an uncertain
constraint set, several assumptions on random set, network
structure and agent weights are made to prove almost sure
convergence. The synchronization of update rule relies on
a central clock to coordinate the step size selection. To
circumvent this limitation the same authors in Lee and
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similar parallel framework for solving convex optimization
problems with one uncertain constraint via the scenario
approach is considered in You and Tempo (2016). In this
setup, the sampled optimization problem is solved in a
distributed way by using a primal-dual subgradient (resp.
random projection) algorithm over an undirected (resp.
directed) graph. We remark that in Carlone et al. (2014);
You and Tempo (2016), constraints and cost function of
all agents are identical. In Bürger et al. (2014), a cut-
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tributed to the network processors and all processors have
common cost function. In the case where constraints are
uncertain, a worst-case approach based on a pessimizing
oracle is used. The oracle relies on the assumption that
constraints are concave with respect to uncertainty vector
and the uncertainty set is convex. A distributed scheme
based on the scenario approach is introduced in Margellos
et al. (2016) in which random samples are extracted by
each node from its local uncertain constraint set and a
distributed proximal minimization algorithm is designed
to solve the sampled optimization problem. The num-
ber of samples required to guarantee robustness can be
large if the probabilistic levels defining robustness of the
solution—accuracy and confidence levels—are stringent,
possibly leading to a computationally demanding sampled
optimization problem at each node.

The main contribution of this paper is the design of a fully
distributed algorithm to solve an uncertain linear program
in a network with directed and asynchronous communica-
tion. The problem under investigation is a linear program
in which the constraint set is the intersection of local
uncertain constraints, each one known only by a single
node. Starting from a deterministic constraint exchange
idea introduced in Notarstefano and Bullo (2011), the
algorithm proposed in this paper introduces a random-
ized, sequential approach in which each node: (i) locally
performs a probabilistic verification step (based on a local
sampling of its uncertain constraint set), and (ii) solves a
local, deterministic optimization problem with a limited
number of constraints. If suitable termination conditions
are satisfied, we are able to prove that the nodes agree
on a common solution which is probabilistically feasible
and optimal with high confidence. As compared to the
literature above, the proposed algorithm has three main
advantages. First, no assumptions are needed on the prob-
abilistic nature of the local constraint sets. Second, each
node can sample locally its own uncertain set. Thus, no
central unit is needed to extract samples and no common
constraint set needs to be known by the nodes. Third and
final, nodes do not need to perform the whole sampling at
the beginning and subsequently solve the (deterministic)
optimization problem. Online extracted samples are used
only for verification, which is computationally inexpensive.
The optimization is performed always on a number of con-
straints that remains constant at each node and depends
only on the dimension of the decision variable and on the
number of node neighbors.

The paper is organized as follows. In Section 2, we for-
mulate the uncertain distributed linear program (LP).
Section 3 presents our distributed sequential random-
ized algorithm for finding a solution—with probabilistic
robustness—to the uncertain distributed LP. The proba-
bilistic convergence properties of the distributed algorithm
are investigated in Section 4. Finally, extensive numerical
simulations are performed in Section 5 to prove the effec-
tiveness of the proposed methodology.

2. PROBLEM FORMULATION

We consider a network of processors with limited compu-
tation and/or communication capabilities that aim at co-
operatively solving the following uncertain linear program

min
θ

cT θ

subject to AT
i (q)θ ≤ bi(q), ∀q ∈ Q, i ∈ {1, . . . , n}, (1)

where θ ∈ Θ ⊂ Rd is the vector of decision variables,
q ∈ Q is the uncertainty vector, c ∈ Rd defines the
objective direction, Ai(q) ∈ Rmi×d and bi(q) ∈ Rmi ,
with mi ≥ d, define the (uncertain) constraint set of
agent i ∈ {1, . . . , n}. Processor i has only knowledge
of a constraint set defined by Ai(q) and bi(q) and the
objective direction c (which is the same for all nodes). Each
node runs a local algorithm and by exchanging limited
information with neighbors, all nodes converge to the same
solution. We want to stress that there is no (central) node
having access to all constraints. We make the following
assumption regarding problem (1).

Assumption 1. (Non-degeneracy). The minimum point of
any subproblem of (1) with at least d constraints is unique
and there exist only d constraints intersecting at the
minimum point.

We let the nodes communicate according to a time-
dependent, directed communication graph G(t) = {V, E(t)}
where t ∈ N is a universal time, V = {1, . . . , n} is the
set of agent identifiers and (i, j) ∈ E(t) indicates that i
send information to j at time t. The time-varying set of
incoming (resp. outgoing) neighbors of node i at time t,
Nin(i, t) (Nout(i, t)), is defined as the set of nodes from
(resp. to) which agent i receives (resp. transmits) informa-
tion at time t. A directed static graph is said to be strongly
connected if there exists a directed path (of consecutive
edges) between any pair of nodes in the graph. For time-
varying graphs we use the notion of uniform joint strong
connectivity formally defined next.

Assumption 2. (Uniform joint strong connectivity).
There exists an integer L ≥ 1 such that the graph(
V,

⋃t+L−1
τ=t E(τ)

)
is strongly connected for all t ≥ 0.

There is no assumption on how uncertainty q enters prob-
lem (1) making it computationally difficult to solve. In
fact, if the uncertainty set Q is an uncountable set, prob-
lem (1) is a semi-infinite optimization problem involving
infinite number of constraints. In general, there are two
main paradigms to solve an uncertain optimization prob-
lem of form (1). The first approach is a deterministic
worst-case paradigm in which the constraints are enforced
to hold for all possible uncertain parameters in the set
Q. This approach is computationally intractable for cases
where uncertainty does not appear in a “simple” form,
e.g. affine, multi-affine, convex, etc. The second approach
is a probabilistic approach where uncertain parameters are
considered to be random variables and the constraints are
enforced to hold for the entire set of uncertainty except a
subset having an arbitrary small probability measure. In
this paper, we follow a probabilistic approach and present
a distributed tractable randomized setup for finding a
solution—with desired probabilistic properties—for the
optimization problem (1).

Notation
The constraint set of agent i is defined by

Hi(q)
.
= [Ai(q), bi(q)].
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Throughout this paper, we use capital italic letter, e.g.
Hi(q)

.
= [Ai(q), bi(q)] to denote a collection of half spaces

and capital calligraphic letter, Hi(q) to denote the set
induced by half spaces, i.e. Hi(q)

.
= {θ ∈ Rd : Ai(q) ≤

bi(q)}. We note that, with this notation, if A = B∪C with
B and C being collection of half spaces, then A = B ∩ C,
that is, the set induced by the union of constraint sets B
and C is the intersection of B and C. Finally J(H) is the
smallest value of cT θ while θ ∈ H. The linear program
specific to each agent i ∈ V is fully characterized by the
pair (Hi(q), c) (note that c defines the objective direction
which is the same for all nodes).

3. RANDOMIZED CONSTRAINTS CONSENSUS

In this section, we present a distributed, randomized
algorithm for solving the uncertain linear program (LP)
(1) in a probabilistic sense. First, recall that the solution
of a linear program of the form (1) can be identified by
at most d active constraints (d being the dimension of the
decision variable). This concept is formally characterized
by the notion of basis. Given a collection of constraints
H, a subset B ⊆ H is a basis of H if the optimal cost
of the LP problem defined by (H, c) is identical to the
one defined by (B, c), and the optimal cost decreases if
any constraint is removed from B. We define a primitive
[θ∗, B] = SolveLP(H, c) which solves the LP problem
defined by the pair (H, c) and returns back the optimal
point θ∗ and the corresponding basis B.

Note that, since the uncertainty set is uncountable, it is
in general very difficult to verify if a candidate solution is
feasible for the entire set of uncertainty or not. We instead
use a randomized approach based, on Monte Carlo sim-
ulation, to check probabilistic feasibility. The distributed
algorithm we propose has a probabilistic nature consisting
of two main steps: verification and optimization. The main
idea is the following. A node has a candidate basis and
candidate solution point. First, it verifies if the candidate
solution point belongs to its local uncertain set with high
probability. Then, it collects bases from neighbors and
solves an LP with its basis and its neighbors’ bases as
constraint set. If the verification step was not successful,
the first violating constraint is also added to the problem.

Formally, we assume that q is a random variable and
a probability measure P over the Borel σ−algebra of Q
is given. In the verification step each agent i generates
Mki

independent and identically distributed (i.i.d) random
samples from the set of uncertainty

qki

.
= {q(1), . . . , q(Mki

)} ∈ QMki ,

according to the measure P, where ki is a local counter
keeping track of the number of times the verification step
is performed and QMki

.
= Q× . . .×Q (Mki

times). Using
a Monte Carlo algorithm, node i checks feasibility of the
candidate solution θi(t) only at the extracted samples.
If a violation happens, the first violating sample is used
as a violation certificate. In the optimization step, agent
i transmits its current basis to all outgoing neighbors
and receives bases from incoming ones. Then, it solves
an LP problem whose constraint set is composed of: i)
a constraint constructed at the violation certificate (if it
exists) ii) its current basis and iii) the collection of bases
from all incoming neighbors. Node i repeats these two

steps until a termination condition is satisfied, namely if
the candidate basis has not changed for 2nL+1 times, with
L defined in Assumption 2. The distributed algorithm is
formally presented in Algorithm 1. The counter ki counts

Algorithm 1 Randomized Constraints Consensus

Input: (Hi(q), c), εi, δi
Output: θsol
Initialization:
Set ki = 1, [θi(1), Bi(1)] = SolveLP(H

i(0), c)
Evolution:

(i) Verification:
• If θi(t) = θi(t− 1), set qviol = ∅ and goto (ii)
• Extract

Mki
≥

2.3 + 1.1 ln ki + ln 1
δi

ln 1
1−εi

(2)

i.i.d samples qki
= {q(1)ki

, . . . , q
(Mki

)

ki
}

• If θi(t) ∈ Hi(q
(�)
ki

) for all 
 = 1, . . . ,Mki , set

qviol = ∅; else, set qviol as the first sample for
which θi(t) /∈ Hi(qviol)

• Set ki = ki + 1
(ii) Optimization:

• Transmit Bi(t) to j ∈ Nout(i, t) and acquire
incoming neighbors basis Y i(t)

.
= ∪j∈Nin(i,t)B

j

• [θi(t+ 1), Bi(t+ 1)] =
SolveLP(H

i(qviol) ∪Bi(t) ∪ Y i(t), c)
• If θi(t+1) has not changed for 2nL+1 times and

qviol = ∅, return θsol = θi(t+ 1)

the number of times the verification step is called. We
remark that if at some t the candidate solution has not
changed, that is θi(t) = θi(t − 1), then θi(t − 1) has
successfully satisfied the verification step and qviol = ∅
at time t − 1 and therefore there is no need to check it
again.

Remark 1. (Asynchronicity). The distributed algorithm
presented in this section is completely asynchronous. In-
deed, time t is just a universal time that does not need
to be known by the nodes. The time-dependent jointly
connected graph then captures the fact that nodes can
perform computation at different speeds.

Remark 2. In the deterministic constraints consensus al-
gorithm presented in Notarstefano and Bullo (2011), at
each iteration of the algorithm, the original constraint set
of the node needs to be taken into account in the local
optimization problem. Here, we can drop this requirement
because of the verification step.

4. ANALYSIS OF RANDOMIZED CONSTRAINTS
CONSENSUS ALGORITHM

In this section, we analyze the convergence properties of
the distributed algorithm and investigate the probabilistic
properties of the solution computed by the algorithm.

Theorem 1. Let Assumptions 1 and 2 hold. Given the
probabilistic levels εi > 0 and δi > 0, i = 1, . . . , n,
let ε =

∑n
i=1 εi and δ =

∑n
i=1 δi. Then, the following

statements hold

(i) Along the evolution of Algorithm 1, the cost J(Bi(t))
at each node i ∈ {1, . . . , n} is monotonically non-
decreasing. That is, J(Bi(t+ 1)) ≥ J(Bi(t)).
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