Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

ScienceDirect

IFAC PapersOnLine 50-1 (2017) 10462-10469

A Linear Programming-based Iterative
Approach to Stabilizing Polynomial
Dynamics

Mohamed Amin Ben Sassi* Ezio Bartocci*
Sriram Sankaranarayanan **

* Vienna University of Technology, Austria
(mohamed. sassi,ezio.bartocci@tuwien.ac.at).
** University of Colorado, Boulder, USA (srirams@colorado.edu)

Abstract: In this paper, we consider the problem of synthesizing static output feedback
controllers for stabilizing polynomial systems. We jointly synthesize a Lyapunov function and a
static output feedback controller that stabilizes the system over a given subset of the state-space.
Motivated by the numerical issues that are commonly faced using SOS (Sum of Squares)/SDP
(Semi-Definite Programming) solvers, we examine a linear programming (LP) based alternative
approach that can yield more precise results, in practice. Our approach uses Bernstein
polynomials to relax parametric polynomial optimization problems into bilinear optimization
problems (BP). Subsequently, we approach the bilinear inequalities using a modified alternating
minimization approach that alternates between solving linear programs on complementary sets
of variables. Finally, we provide a comparison between our approach and BMI (bilinear matrix
inequalities) solvers that tackle the same problem. We conclude that LP/BP relaxation approach
is promising and can be more efficient than SDP/BMI relaxations.
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1. INTRODUCTION

The problem of designing stabilizing controllers for non-
linear dynamical systems is of great importance. In this
paper, we study the problem of synthesizing static output
feedback controllers for polynomial systems by solving a
polynomial optimization problem to directly obtain the
controller along with the associated Lyapunov functions
that yields the proof of stability.

Our approach inputs the description of a polynomial
system and a desired region R to be stabilized. It then
proceeds to find a static output feedback control law and
an associated Lyapunov function to ensure local stability
in R. We assume a given structure for the feedback
as a polynomial function of the outputs of the system.
Furthermore, we assume a polynomial template form for
the unknown Lyapunov function. We proceed to encode
the conditions for the Lyapunov function, obtaining a
hard polynomial optimization problem that involves the
coefficients of the Lyapunov functions and those of the
feedback. Following the LP relaxations presented in Sassi
et al. (2016), a so called bilinear optimization problem
(BP) is obtained. Then, we iteratively solve this BP
problem through an iterative method alternating between
linear programs with optimal values getting closer and
closer to the solution of the bilinear problem.
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The i*" iteration of the approach selects a positive definite
polynomial V; and a feedback law w;. Furthermore, we
require V' to be negative definite inside the region R for V;
to be a Lyapunov function guaranteeing asymptotic stabil-
ity. Failing this, we first search for a new positive definite
polynomial Vi1 whose Lie derivative V/, ; has a larger
maxima inside R fizing u;, and adjust to a new feedback
law u; 1 that improves the maximal value of Vz/+1 inside R.
Each iteration is reduced to solving a Linear Programming
(LP) problem obtained using Bernstein polynomials com-
bined with a reformulation linearization technique (RLT)
proposed by Sherali and Tuncbilek (1992). It is well-known
that iterative approaches does not necessarily converge to
a global minimum, in general. However, our evaluation
over a wide variety of benchmark examples shows that our
approach is effective at converging to a global minimum
by discovering an appropriate feedback law u* and an
associated Lyapunov function V*.

1.1 Related work

Automatic static output feedback design, or more gener-
ally, finding feedback that satisfies given structural con-
straints is well-known to be a hard problem in general. A
direct approach given by Henrion et al. (2005) uses the
characteristic polynomial of the transfer function matrix,
and derives constraints that ensure the Hermite stability
criterion for this matrix. As a result, they obtain a system
of PMI (polynomial matrix inequalities), that is solved
using a local optimization solver (PENBMI). Similarly,
the work by Chesi (2014) considers the problem of robust
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output feedback controller synthesis for linear systems that
involves the formulation of polynomial constraints using
the Routh-Hurwitz criterion. To avoid directly solving
bilinear constraints, the approach projects away one set
of variables using sum-of-squares by considering a “robust
stabilizability” function that is positive over those values
of feedback gains that yield a robustly stable closed loop
system. In contrast, an indirect approach such as the one
proposed here reduces the non convex BMIs to a series of
convex LMIs. This was proposed as the V — K iteration
by El Ghaoui and Balakrishnan (1994). The approach
iteratively solves a bilinear problem by fixing one set of
variables while modifying the other to result in a decrease
in the objective values. Our goal is to use this technique
for polynomial systems while replacing linear matrix in-
equalities (BMI) and linear matrix inequalities (LMI) with
bilinear and linear programs that can be solved more
efficiently iteratively. A similar idea for solving bilinear
problems appears in the work of Gaubert et al. (2007),
for finding invariants for discrete-time systems.

Another class of methods consists on reducing the problem
to a set of sum of squares (SOS) formulations (see Zhao
and Wang (2010); Nguang et al. (2011) and references
therein). In Nguang et al. (2011), an iterative SOS ap-
proach is proposed. This approach uses the Schur comple-
ment to produce a set of BMIs relaxed to an SOS problem.
More precisely, an additional design nonlinear term e(x) is
introduced, and causes bilinearity. An iterative approach
is then obtained by fixing a guess for e(x) and iteratively
updating it until feasibility is obtained. Once again, the
major problem arises from the fact that the Lyapunov
function and a static output feedback are needed simul-
taneously. Another alternative called diagonally dominant
sum-of-squares (DSOS) was proposed by Ahmadi and Ma-
jumdar (2014). It proceeds in a similar fashion as the stan-
dard relaxation to SDP problems ( Parrilo (2003); Shor
(1987); Lasserre (2001)). Rather than encoding positive
semi-definiteness of the matrices in the resulting SDP,
it imposes a stronger criterion of diagonal dominance on
these matrices that naturally yields LP relaxation. How-
ever, this is still immature and no efficient solvers are
developed yet.

Recently, a more related approach was proposed by Ribard
et al. (2016) for designing polynomial controllers using
Bernstein basis. In this work, only Bernstein coeflicients
are used and bilinearity is avoided by considering the set
of all possible vertices (thanks to the so called convex
property of multi-affine functions inside rectangles ( Belta
and Habets (2006))) . This approach can be expensive
since it potentially involves enumerating an exponential
number of vertices. It also introduces conservatism since
it limits the search to the vertices of a hyper-rectangle
rather than a polytope. Note that a similar approach
to finding globally optimal solution of bilinear programs
was proposed earlier by Floudas and Visweswaran (1990)
using ideas from Bender’s decomposition.

Finally, other approaches to controlling polynomial sys-
tems include the use of nonlinear optimal control tech-
niques such as feedback linearization, back-stepping, and
exact linearization. However, those techniques rely on the
system being of a certain form, mostly involve state-
feedback and are less related to our approach.
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1.2 Organization

The paper is organized as follows. In Section 2, we show
that solving the stabilization problem is equivalent to
search for a polynomial Lyapunov function and an ad-
missible controller inside a polyhedral feasible region. The
obtained conditions are then recasted to a parametric
polynomial optimization problem (PPOP). In Section 3,
we show how those PPOPs can be relaxed to a bilinear
feasibility problem. In Section 4, we provide our main algo-
rithm for joint synthesis of polynomial Lyapunov functions
and controllers. Finally, numerical results and comparison
with SDP based approaches are presented in Section 5.

2. PROBLEM FORMULATION AND POLYNOMIAL
OPTIMIZATION PROBLEMS

2.1 Problem formulation

Fig. 1. Overall structure of the controller synthesis prob-
lem considered.

In this work, we consider a nonlinear control-affine system
subject to input constraints :

o(t) = f(z(t) + g(x(t)uly(t), v € R, w e l. (1)
y(t) = h(z(t)).

where z € R” represents the state variables ranging over
an hyper-rectangle R : [21,%1] X -+ X [Zn,Tp), u € RP
represents the control inputs ranging over a polyhedral set
U={ueRP|ay u<pPugr, Yk € Ky} where ayq 1, € RP,
Bu.r € R, Ky is a finite set of indices, and y € R? are the
outputs.

We assume that the functions f : R* — R”, h: R" — RY
and the control matrix g : R” — R™*P) defining the
dynamics of the system are multivariate polynomial maps
and that z* = 0,, is an equilibrium for the system (1), i.e

The choice of rectangular region R and polyhedral region
U is motivated by the linear relaxation that will be used
later, and by the fact that we will deal with local stability.
We usually pick R = [—1,1]™ as a reasonable stabilizing
region that can be varied for each example using a scaling
factor).

Stabilizing Feedback: In this work, we assume that
the desired feedback is given by a function v : R? — U
mapping outputs y to control inputs u to yield a closed-
loop system

&= f(x) +g(x)uly), yv="h(z) (2)

We require that the closed loop system (2) be asymptoti-
cally stable in R. This is achieved by ensuring the existence
of a local differentiable Lyapunov function. More precisely,
the system (2) is asymptotically stable in R if there exist
a function V(x) such that
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