
Computers and Operations Research 80 (2017) 94–100 

Contents lists available at ScienceDirect 

Computers and Operations Research 

journal homepage: www.elsevier.com/locate/cor 

An improved integer linear programming formulation for the closest 

0-1 string problem 

Claudio Arbib 

a , Mara Servilio 

b , ∗, Paolo Ventura 

b 

a Dipartimento di Scienze/Ingegneria dell’Informazione e Matematica, Università degli Studi dell’Aquila via Vetoio, Coppito, I-67010 L’Aquila, Italy 
b Istituto di Analisi dei Sistemi e Informatica “A. Ruberti” CNR, Via dei Taurini, 19 - 00185, Roma, Italy 

a r t i c l e i n f o 

Article history: 

Received 30 December 2015 

Revised 18 November 2016 

Accepted 19 November 2016 

Available online 19 November 2016 

Keywords: 

Closest string problem 

Branch-and-cut 

Continuous relaxation 

a b s t r a c t 

The Closest String Problem (CSP) calls for finding an n -string that minimizes its maximum Hamming 

distance from m given n -strings. Recently, integer linear programs (ILP) have been successfully applied 

within heuristics to improve efficiency and effectiveness. We consider an ILP for the binary case (0-1 

CSP) that updates the previous formulations and solve it by branch-and-cut. The method separates in 

polynomial time the first closure of { 0 , 1 
2 
} -Chvátal-Gomory cuts and can either be used stand-alone to 

find optimal solutions, or as a plug-in to improve heuristics based on the exact solution of reduced prob- 

lems. Due to the parity structure of the right-hand side, the impressive performances obtained with this 

method in the binary case cannot be directly replicated in the general case. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Let A be an alphabet with p symbols. The Closest String —or 

Center String —Problem (CSP) calls for finding a string x ∈ A 

n that 

better approximates a given set S of strings s 1 , . . . , s m ∈ A 

n . Ap- 

proximation is measured with the Hamming distance d ( x, y ), that 

counts the number of different components in x, y . An optimal so- 

lution of the CSP is an x ∗ that, among all strings x ∈ A 

n , minimizes 

the maximum distance d ( x, s i ) from any s i ∈ S . 

The CSP arises in such fields as computational biology and cod- 

ing theory, and is NP-hard. The alphabet A can contain two or more 

symbols, depending on application: for example, p = 2 in encoding 

problems, p = 4 in DNA recognition etc. In the former case we re- 

fer to binary (or 0-1) CSP. 

Due to its importance, the problem has recently attracted ex- 

tensive research, see e.g. [5,8–10] . Various integer linear program- 

ming (ILP) formulations have also been proposed to solve it, see 

[1,6,7] , and ILP is a key factor of success for the present state-of- 

the-art heuristics [2,3] . Therefore, improving the performance of 

ILP formulations for the CSP is a way to improve the performance 

of those algorithms. 

In this paper we focus on the binary CSP. We revise the for- 

mulation in [1] and strengthen the polyhedron Q of its continu- 

ous relaxation by the first closure of { 0 , 1 2 } -Chvátal-Gomory cuts 

∗ Corresponding author. Mara Servilio 

E-mail addresses: claudio.arbib@univaq.it (C. Arbib), mara.servilio@iasi.cnr.it (M. 

Servilio), paolo.ventura@iasi.cnr.it (P. Ventura). 

(in short, { 0 , 1 2 } -CG cuts). We prove that when the polyhedron Q 

′ 
of the first closure is defined by the inequalities of our formulation, 

the points in Q − Q 

′ can be separated in polynomial-time. We also 

point out that, with the formulation here considered, Q 

′ has dif- 

ferent properties in the general and in the binary case: in the for- 

mer, we observe that Q = Q 

′ , thus separating over Q 

′ is pointless; 

on the contrary, the cuts in Q 

′ are generally very effective in the 

binary case. Based on this analysis, we develop a branch-and-cut 

algorithm for the binary CSP, and test it on instances from [3] . The 

cuts in the first closure are often sufficient to get an impressive 

speed-up of CPU time. 

2. An integer linear programming formulation for the general 

CSP 

Let d denote the largest Hamming distance of the desired string 

x from a string in the target set S . In the so-called “natural” formu- 

lation [1] , x is encoded by a matrix Y ∈ {0, 1} p ×n with exactly one 

1 per column: the entries y αk of Y are binary decision variables 

that assign a symbol α ∈ A to each component x k of x . The prob- 

lem is formulated as follows: 

min d (1) 

d + 

n ∑ 

k =1 

y s i 
k 
k ≥ n i = 1 , . . . , m (2) 

∑ 

α∈ A 
y αk = 1 k = 1 , . . . , n (3) 

http://dx.doi.org/10.1016/j.cor.2016.11.019 

0305-0548/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.cor.2016.11.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.11.019&domain=pdf
mailto:claudio.arbib@univaq.it
mailto:mara.servilio@iasi.cnr.it
mailto:paolo.ventura@iasi.cnr.it
http://dx.doi.org/10.1016/j.cor.2016.11.019


C. Arbib et al. / Computers and Operations Research 80 (2017) 94–100 95 

y αk ≥ 0 (4) 

−y αk ≥ −1 (5) 

y αk integer α ∈ A, k = 1 , . . . , n 

In the i th constraint (2) , s i 
k 

is the symbol of A occurring at the 

k th component of s i : hence the summation on the left-hand side 

counts the bits of x that are equal to the corresponding bits of 

s i . The distance between x and s i is therefore the complement of 

this summation to n . For instance, for A = { a, b, c, d} , n = 5 and s i = 

abbcd, inequality (2) reads 

d + y a 1 + y b2 + y b3 + y c4 + y d5 ≥ 5 

or, eliminating y d 5 by (3) as in [1] , 

d + y a 1 + y b2 + y b3 + y c4 − y a 5 − y b5 − y c5 ≥ 4 

The nonzero support of these inequalities does not seem to 

have a combinatorial structure that can be exploited to efficiently 

separate { 0 , 1 2 } -CG cuts. Then we suggest here a “dense” formula- 

tion where such cuts can easily be separated. To this aim, we en- 

code a generic string s i in the same way as the x , setting s i 
αk 

= 1 if 

s i 
k 

= α and 0 otherwise, for any α ∈ A . The following expression 

f i α(x k ) = (y αk − s i αk ) 
2 = y αk − 2 s i αk y αk + s i αk 

gets value 0 if y αk = s i 
αk 

(that is, x k = s i 
k 
) and 1 otherwise. In the 

latter case, y αk differs from s i 
αk 

in exactly two cases; therefore 

f i (x k ) = 

∑ 

α∈ A 
f α(x k ) = 

∑ 

α∈ A 
(y αk − 2 s i αk y αk + s i αk ) 

gets value 0 for x k = s i 
k 

and 2 otherwise. Consequently 

2 d(x , s i ) = 

n ∑ 

k =1 

f i (x k ) = 

n ∑ 

k =1 

∑ 

α∈ A 
(y αk − 2 s i αk y αk + s i αk ) 

Using the expression above and observing that 

n ∑ 

k =1 

∑ 

α∈ A 
s i ak = n 

we can replace (2) by 

2 d + 

n ∑ 

k =1 

∑ 

α∈ A 
(2 s i αk − 1) y αk ≥ n i = 1 , . . . , m (6) 

Note that the coefficient (2 s i 
αk 

− 1) of any variable y αk in in- 

equality (6) is ± 1: therefore we refer to (6) as to dense inequalities . 

Because of hyperplanes (3) , the polyhedron (3) –(6) has dimension 

(p − 1) n + 1 . 

3. Reformulation for the binary case 

Assuming A = { 0 , 1 } , the components of Y and S i of 

Section 2 become 

y 1 k = x k , s i 1 k = s i k , y 0 k = 1 − x k , s i 0 k = 1 − s i k 

where complementation derives from the assignment 

equations (3) . The Hamming distance between x and s i is then 

directly expressed by 

d(x , s i ) = 

n ∑ 

k =1 

[ s i k (1 − x k ) + (1 − s i k ) x k ] 

with x ∈ {0, 1} n . Therefore, a string x whose distance from any s i 

is at most d must fulfill 

x (N 

i 
0 ) − x (N 

i 
1 ) = 

∑ 

k ∈ N i 
0 

x k −
∑ 

k ∈ N i 
1 

x k ≤ d −
n ∑ 

k =1 

s i k 

where N 

i 
0 

and N 

i 
1 

denote the set of indexes k such that s i 
k 

= 0 and 

s i 
k 

= 1 , respectively. Rewriting the above condition with d = 2 δ and 

n i = 

∑ n 
k =1 s 

i 
k 
, we get our formulation: 

min δ (7) 

2 δ −
∑ 

k ∈ N i 
0 

x k + 

∑ 

k ∈ N i 
1 

x k ≥ n 

i i = 1 , . . . , m (8) 

x k ≥ 0 (9) 

−x k ≥ −1 (10) 

x k integer k = 1 , . . . , n 

Just like (6) , inequalities (8) have the x coefficients in {−1 , +1 } 
and are again called dense . We distinguish between odd and even 

dense inequalities according to the parity of the right-hand side 

n i . Note that in the non-binary CSP, all dense inequalities have the 

same parity (in fact, in this case n i is always equal to n ). In the 

binary CSP, instead, the parity of the right-hand sides is instance- 

dependent. In the test bed used for our computational experiments 

we observed odd and even n i ’s quite randomly distributed. This 

fact plays a crucial role in the strength of the method here pro- 

posed, as we will see next. 

4. { 0 , 1 2 } -Chvátal-Gomory cuts for the binary case 

Unlike the general Chvátal-Gomory cuts, { 0 , 1 2 } -CG cuts are not 

derived from the polyhedron Q obtained by linearly relaxing the 

integer formulation but from the particular system of linear in- 

equalities used to describe Q . In general, let S denote the system 

of linear inequalities of an ILP formulation: 

S = { a i y ≥ b i with a i ∈ Z 

m and b i ∈ Z for all i ∈ I} , 
and define the feasible set and its linear relaxation, respectively, 

as 

P = { y ∈ Z 

n : y satisfies S} Q = { y ∈ IR 

n : y satisfies S} 
A { 0 , 1 2 } -CG cut for P is obtained by combining inequalities in 

S with multipliers that are either 0 or 1 
2 , so that the coefficients 

at the left-hand side are integer and the right-hand side is not. 

In this way, one can round the right-hand side up to the closest 

integer, and get an inequality which is valid for P and not for Q . 

Equivalently, a { 0 , 1 2 } -CG cut ax ≥ b can be derived from a linear 

combination of a i x ≥ b i with λi ∈ {0, 1} such that 

a j = 

∑ 

i ∈ I 
λi a i j is even for j = 1 , . . . , n b = 

∑ 

i ∈ I 
λi b i is odd (11) 

Let S ′ contain all the { 0 , 1 2 } -CG cuts that can be derived from 

the inequalities of S . Such a system is called the first { 0 , 1 2 } -CG clo- 

sure of S . 

Take ȳ ∈ Q, and consider the problem of separating ȳ with a cut 

in S ′ , that is, finding an inequality of S ′ that is violated by ȳ , or 

conclude that S ′ does not contain such an inequality. The problem 

can be rephrased as follows: 

Problem 1. Find λi ∈ {0, 1} fulfilling (11) and such that 

v iol(λ, ̄y ) = −
n ∑ 

j=1 

( 

1 

2 

∑ 

i ∈ I 
λi a i j 

) 

ȳ j + 

⌈∑ 

i ∈ I λ
i b i 

2 

⌉
> 0 . 

Rewrite the violation as 

v iol(λ, ̄y ) = −1 

2 

∑ 

i ∈ I 
λi 

n ∑ 

j=1 

a i j ̄y j + 

1 

2 

( ∑ 

i ∈ I 
λi b i + 1 

) 



https://isiarticles.com/article/111743

