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Abstract: We present some improvements on interpolation based control (IC) for linear
discrete-time systems with polyhedral constraints on the control and the states variables. The
plant may be uncertain, time-varying, and subject to bounded disturbances. Roughly speaking,
IC approach is based on the interpolation between an inner and an outer controller. The
extension presented here is twofold. On the one hand, the IC approach is extended to deal with
higher order inner controllers, making it e.g. possible to incorporate integral action in a vicinity
of the origin. On the other hand, this paper presents a modification that better exploits the
control signal range. As with previous IC strategies, the presented method demands relatively
low online computational resources, and is applicable also to uncertain plants. The benefits of
the improved scheme are illustrated in some examples.
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1. INTRODUCTION

This paper deals with the problem of regulating linear
discrete-time systems in the presence of state and con-
trol constraints. Approaches handling problems of this
type include Vertex control (Gutman and Cwikel, 1986;
Blanchini and Miani, 2008), Model Predictive Control
(MPC) (Mayne et al., 2000) and Interpolating Control
(IC) (Nguyen et al., 2013; Nguyen, 2014).

MPC has received wide attention from the academy in
the last three decades and has grown to dominate the
process industry (Borrelli et al., 2015). MPC provides a
systematic approach for multivariable systems with state
and control constraints. The main drawback of MPC is
the computational complexity involved in the optimization
problem solved in each computation step. This limitation
is dealt with by tailored optimization tools (Wang and
Boyd, 2010), by pre-computing the optimization results for
each state and storing them in a look-up table (Bemporad
et al., 2002), or by interpolation based methods, unrelated
to IC, (Rossiter and Ding, 2010). However, extensions of
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these algorithms to deal with plant uncertainty involve
excessive computations, thus holding up implementations.

Vertex control can be implemented to the same type of
plants, and requires low computational demands. The
main disadvantage of Vertex control is that it only uses
the full control range at the boundary of a predefined
controlled invariant set. This leads to slow convergence
when compared with MPC. To overcome this disadvantage
one may switch to a more aggressive local controller near
the origin, but this leads to a non-smooth control signal.

The control scheme in Nguyen et al. (2013) overcomes this
shortcoming by interpolating between an “inner” linear
controller designed for performance, around the origin,
and an “outer” stabilizing control law (e.g., Vertex control
and Minkowski functional minimization control (Blanchini
and Miani, 2008)) that enlarges the admissible set. This
IC method requires the solution of at most two Linear
Programming (LP) problems at each time step, opposed
to the Quadratic Programming (QP) in MPC, making
it computationally attractive. IC is easily extendable to
control uncertain and time-varying plants with negligible
increase in the online computational burden (Nguyen
et al., 2011).

This work further improves the IC, and relies on the recent
work documented in Gutman and Nguyen (2014). Two
improvements are presented: (i) handling the interpolation
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of inner and outer controller with different number of
states, and (ii) better exploiting the control range.

The first improvement allows for a controller of any or-
der to be used in proximity to the origin with negligible
increase in computation time. MPC on the other hand,
always produces an affine control law for any given state
belonging to its region of feasibility. For example, in MPC,
introducing integral action on some of the states results in
having to solve a higher order QP, significantly increas-
ing the computational load. In the proposed integrated
scheme, the higher order inner controller has no effect
on the order of the LP solved in each step. The second
improvement guarantees the feasibility of a full control
range in the controller’s region of feasibility.

This work is organized as follows. Preliminaries, including
the problem statement and some definitions from invariant
set theory, are given in Section 2. The IC approach is
briefly presented in Section 3. The main results, improve-
ments for using a higher order inner controller and for
better utilization of control signal range, are presented in
Section 4. Examples are given in Section 5, and finally, the
conclusions are presented in Section 6.

2. PRELIMINARIES

We consider the uncertain and/or time-varying linear
discrete-time plant:

x(k + 1) = A(k)x(k) +B(k)u(k) +Dw(k) (1)

where x(k)∈Rn, u(k)∈Rm, and w(k)∈Rd are the mea-
surable state, input, and disturbance vectors, respectively.
The matrices A(k) ∈ Rn×n, B(k) ∈ Rn×m, and D ∈ Rn×d.
The matrices A(k) and B(k) satisfy:

A(k) =

s∑
i=1

αi(k)Ai, B(k) =
s∑

i=1

αi(k)Bi,

s∑
i=1

αi(k) = 1, αi(k) ≥ 0, ∀i = 1, . . . , s,

(2)

where αi(k) may be constant but unknown, random at
each time, representing a linear parameter varying (LPV)
plant, or time varying in some other way. See Nguyen
(2014) for a more general uncertainty description that can
be modeled as (2).

We consider that the state vector x(k), the control vector
u(k), and disturbance vector w(k) are subject to bounded
polyhedral constraints X , U , and W, respectively

X = {x ∈ Rn : Fxx ≼ gx},
U = {u ∈ Rm : Fuu ≼ gu},
W = {w ∈ Rd : Fww ≼ gw}.

(3)

The symbol ≼ is used to denote element-wise inequalities.

We now give some relevant basic definitions from invariant
set theory. The interested reader is referred to Blanchini
and Miani (2008) for more details. For this purpose, it is
assumed that there exists a linear state feedback control
law

u(k) = Kx(k). (4)

that robustly stabilizes system (1). The closed-loop system
formed by (1) and (4) is given by

x(k + 1) = A(k)x(k) +B(k)Kx(k) +Dw(k) (5)

Note that this closed-loop system can represent a feedback
loop with a dynamic controller, using an augmented state
composed from the states of the controlled plant and the
controller states (see e.g. Tarbouriech et al. (2011)).

Definition 1. Given a closed-loop system (5) with con-
straints (3), the set Ω0 ⊆ X is a robustly positively in-
variant constrained-admissible set if for each x(k) ∈ Ω0

and w(k) ∈ W, it holds that A(k)x(k) + B(k)Kx(k) +
Dw(k) ∈ Ω0 and Kx(k) ∈ U .

The largest robustly positively invariant constrained-
admissible set is generally called the maximal admissible
set (MAS). Methods for computing the exact or polyhedral
approximation of the MAS are presented in Gilbert and
Tan (1991); Blanchini and Miani (2008). Henceforth the
MAS will be denoted as Ω and described by its polyhedral
approximation:

Ω = {x ∈ Rn : Fox ≼ go}. (6)

Definition 2. Given a system (1), the set Ψ ⊆ X is robustly
controlled positively invariant set, if for any x(k) ∈ Ψ and
w(k) ∈ W , there exists a control u(k) ∈ U such that
x(k + 1) ∈ Ψ. Such a control is called admissible control.

Definition 3. Given a system (1), the set of states CN ⊆ X
is an N-step robustly controlled set from Ω, if all states
belonging to it can be steered to the set Ω in no more
than N steps satisfying u(k) ∈ U for all w(k) ∈ W.

Since Ω is an invariant set, CN is a robustly controlled pos-
itively invariant set. There exist algorithms to construct
CN leading to a polyhedral set

CN = {x ∈ Rn : FNx ≼ gN}. (7)

3. INTERPOLATION BASED CONTROL

The method presented here is built upon some previous
works, see e.g. Nguyen et al. (2013) and Nguyen (2014),
that present an interpolation based scheme. The main
idea is to have a linear feedback law (4) designed for de-
sired performance and robustness, admissible in a (inner)
bounded set Ω ⊂ X . Then in order to enlarge the domain
of attraction, it is interpolated with an affine stabilizing
control law, admissible in an outer set CN ⊆ X , that
contains Ω. These two control laws are denoted as inner
and outer, respectively.

Taking Ω as the MAS of the inner controller, and CN its
N-step robustly controlled invariant set, any state x ∈ CN

can be decomposed as

x(k) = c(k)xv(k) + (1− c(k))xo(k) (8)

where xv(k) ∈ CN , xo(k) ∈ Ω and 0≤ c(k)≤ 1. The control
signal is similarly decomposed as

u(k) = c(k)uv(k) + (1− c(k))uo(k) (9)

with uo(k) and uv(k) computed by the inner and outer
control law, respectively.

Recalling that the inner controller uo=Kxo was designed
for desired performance and robustness, it is then desirable
to have u as close as possible to uo for all x∈CN .
Moreover, it is clear that having c=0 for x ∈ Ω results in
an admissible control input. This motivates the following
optimization
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