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Abstract: In this paper, we propose a novel formulation for encoding state constraints into the
Linear Programming approach to Approximate Dynamic Programming via the use of penalty
functions. To maintain tractability of the resulting optimization problem that needs to be solved,
we suggest a penalty function that is constructed as a point-wise maximum taken over a family of
low-order polynomials. Once the penalty functions are designed, no additional approximations
are introduced by the proposed formulation. The effectiveness and numerical stability of the

formulation is demonstrated through examples.
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1. INTRODUCTION

All engineering problems place requirements on the states
of a systems to ensure safe and practical operation, for
example a robotic arm should not extend out beyond
its defined workspace. In the Stochastic Optimal Con-
trol (SOC) framework, these requirements are encoded
as constraints on the state and input spaces. However,
finding an exact solution to such problems is in gen-
eral intractable and leads to the curse of dimensionality
(Powell, 2014). In the literature of Approximate Dynamic
programming (ADP), many methods have been proposed
for computing sub-optimal solutions of SOC problems,
ranging from model-free to model-based methods, see
Bertsekas and Tsitsiklis (1996) and Bertsekas (2013). The
Linear Programming (LP) approach to ADP is a model-
based method first introduced by Schweitzer and Seid-
mann (1985) and equipped with performance guarantees
by De Farias and Van Roy (2003). Although it is pos-
sible to include state constraints with the LP approach,
the approximation techniques proposed either: lead to
intractable problems, require problem specific tuning, or
don’t respect the constraints. In this paper, we propose a
formulation for including constraints that addresses all of
these shortcomings.

State constraints are categorized as either: (i) hard con-
straints that must always be satisfied to avoid failure of the
system, or (ii) soft constraints that are preferable to satisfy
but for which violations do not lead to system failure. Sub-
optimal policies synthesized through the LP approach to
ADP cannot in general guarantee online constraint satis-
faction (Chen and Blankenship, 2004). Hence we consider
problems with soft constraints. Building climate control
is one motivating example for the use of soft constraints
(Sturzenegger et al., 2016).
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Soft constraints are commonly encoded in SOC problems
using penalty functions, which impose a high cost on con-
straint violations, leading to an overall stage cost function
that can be non-smooth. In this case, the optimal cost-
to-go function, which characterizes the solution of the
SOC problem, will also be non-smooth (Kerrigan and Ma-
ciejowski, 2000). Recent developments of the LP approach
to ADP by Wang et al. (2014) and Summers et al. (2013)
used polynomial functions to improve the approximation
quality. However, the approximation quality degrades for
non-smooth optimal cost-to-go functions.

Recent work has suggested that improved approximations
of the optimal cost-to-go function can be achieved by
taking the point-wise maximum over a family of polyno-
mial approximations, see O’Donoghue et al. (2011) and
Beuchat et al. (2016). This work is promising because it
allows non-smooth approximations to be constructed with
minimal tuning effort. The key ingredient missing is the
ability to include penalty functions into the framework.
High order polynomials can encode soft constraints into
the formulation of Summers et al. (2013), however, even for
simple box constraints, it leads to optimization problems
that are either intractably large or suffer numerical issues
(Lasserre, 2001).

In this paper, we study penalty functions constructed as
the point-wise maximum over a family of polynomials and
propose a formulation for their inclusion into the LP ap-
proach to ADP. On the theoretical side, our main contribu-
tion is proving that our proposal is an exact reformulation,
and as such it does not introduce additional approximation
steps. On the practical side, our proposed formulation:
(i) allows the use of non-smooth penalty functions, (ii)
requires only a small increase in computational burden,
and (iii) is numerically stable. Overall, our contribution
broadens the applicability of the LP approach.

The paper is structured as follows. Section 2 introduces
the soft constraint formulation considered and Section 3
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incorporates this into the theoretical framework of the LP
approach to DP, additionally providing practical guidance
for computing approximations. Section 4 investigates the
effectiveness and behavior of our proposed formulation
through numerical examples.

2. DYNAMIC PROGRAMMING (DP)
FORMULATION

This section introduces the problem formulation with gen-
eral constraints on the state-by-input space and uses the
Bellman equation to characterize solutions. We consider
infinite horizon, discounted cost, constrained stochastic
optimal control problems. The formulation with hard con-
straints is introduced first and used to motivate the specific
soft constraint formulation studied throughout the paper.

2.1 Formulation with Hard Constraints

The system is described by discrete-time dynamics over
continuous state and action spaces. The state of the system
at time t is x; € X C R™. The system state is influenced
by the control decisions u; € Y C R™, and the stochastic
disturbance & € = C R"™. In this setting, the state
evolves according to the function g : X x U x Z — X as,
Tir1 = g (x4, ug, & ). At time t, the system incurs the stage
cost v* I (x4, ur), where y € [0, 1) is the discount factor. The
objective is to minimize the infinite sum of the stage costs,
while ensuring the the hard constraint (z,u) € C C X' xU
is satisfied at all time steps.

The optimal Value function, V*: X — R, characterizes
the solution of this constrained optimal control problem.
It represents the cost-to-go from any state of the system if
the optimal control policy is played. In order to write out
the Bellman equation that V* satisfies, the hard state-by-
input constraint is encoded by adapting the stage cost to
be infinite for constraint excursions. Defining,

Ihard (7, 1) = {l(x,u)

+00
the optimal Value function is the solution of the Bellman
equation (Bellman, 1952),

V*(J?) = 111615 lhard(xvu) + ’YE [V* (g(x,u,ﬁ))] ’ (1)

for (z,u) €C,
otherwise ,

for all x € X. The optimal control actions are generated
via the Greedy Policy,
w (@) =argmin ba(z.0) + VE [V (9.0, €)] . (3)
ue

By II we denote the set of all feasible policies, i.e.,
{m(-) : w(z) €U, Vz € X}.

In order for (1) to have a solution V*, we assume that 37 €
IT with bounded infinite horizon costs for some x € X. In
the context of hard constraints, this assumption ensures
the existence of a policy satisfying (z;,u;) € C for all ¢.
In addition, to ensure V* is measurable and attains the
infimum, we work under Assumptions 4.2.1(a) and 4.2.1(b)
of Herndndez-Lerma and Lasserre (2012), which place mild
requirements on the stage cost function, dynamics, and
exogenous disturbance process. These assumptions apply
equally for the soft-constraint formulation presented next.
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Fig. 1. Stage cost encoding of the constraint z € [1,2] = C.
The solid blue line is a possible ls.f, constructed from
three [; quadratics shown in dashed blue. The dotted
red line is lharq.-

2.2 Formulation with Soft Constraints

As lhara cannot be used in the Linear Programming (LP)
approach to ADP, we describe here the soft-constraint
approximation of ly,.q that is studied in this paper. We
consider soft-constraint stage cost functions of the form,

Lsoft (1'7 u) = I?GaIX ll(ZZ?, U) »

where 7 is some index set and ; : (X' xU) — R. For each
problem instance, the family of [; functions must be
designed to encode a shape similar to lpa.q, i.€., We require:

o Lot (z,u) = l(z,u) for all (z,u) €C,
o looft (2, u) grows steeply as the distance from (z,u) to
C increases.

In section 3.8, we describe a method for constructing lsogt
when C is a polytope.

To maintain the tractability of the approximation method
described in Section 3.3, the [; functions should be from
the same class of functions as [. Consider, for example, a
quadratic [, the point-wise maximum allows [ to grow
steeply outside of C using only quadratics, i.e., without
higher order polynomials. To illustrate the theory, we
introduce an example that runs throughout the paper.
Consider a system with n, = n, = 1, a nominal stage cost
l(z,u) = 22 + u?, and state constraint = € [1,2] = C that
should be encoded with the stage cost. Figure 1 shows the
lsoft chosen to encode the state constraint according to the
requirements above.

Given lgof, the Bellman equation for this formulation is,

V*(.’E) = Znel{{l lSOft(xau) + ’YE [V* (g(m,u,f))] ’

(TSV*)(=)

where 7 is the Bellman operator and the subscript “s” is
used to make explicit the use of lsor;. The greedy policy
is identical to (2), expect with lhara replaced by Ilsof.
The next section provides exact and approximate solution
methods for (3).
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