
ARTICLE IN PRESS

JID: JSS [m5G; July 1, 2016;8:41]

The Journal of Systems and Software 0 0 0 (2016) 1–10

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

On scaling dynamic programming problems with a multithreaded

tabling Prolog system

Miguel Areias ∗, Ricardo Rocha

CRACS & INESC TEC and Faculty of Sciences, University of Porto, Rua do Campo Alegre, 1021, 4169-007 Porto, Portugal

a r t i c l e i n f o

Article history:

Received 15 May 2015

Revised 4 May 2016

Accepted 23 June 2016

Available online xxx

Keywords:

Dynamic programming

Multithreading

Tabling

Prolog

Scalability

a b s t r a c t

Tabling is a powerful implementation technique that improves the declarativeness and expressiveness of

traditional Prolog systems in dealing with recursion and redundant computations. It can be viewed as a

natural tool to implement dynamic programming problems, where a general recursive strategy divides a

problem in simple sub-problems that are often the same. When tabling is combined with multithreading,

we have the best of both worlds, since we can exploit the combination of higher declarative semantics

with higher procedural control. However, at the engine level, such combination for dynamic programming

problems is very difficult to exploit in order to achieve execution scalability as we increase the number of

running threads. In this work, we focus on two well-known dynamic programming problems, the Knap-

sack and the Longest Common Subsequence problems, and we discuss how we were able to scale their

execution by using the multithreaded tabling engine of the Yap Prolog system. To the best of our knowl-

edge, this is the first work showing a Prolog system to be able to scale the execution of multithreaded

dynamic programming problems. Our experiments also show that our system can achieve comparable or

even better speedup results than other parallel implementations of the same problems.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Dynamic programming (Bellman, 1957) is a general recursive

strategy that consists in dividing a problem in simple sub-

problems that, often, are the same. The idea behind dynamic

programming is to reduce the number of computations: once an

answer to a given sub-problem has been computed, it is memo-

rized and the next time the same answer is needed, it is simply

looked up. Dynamic programming is especially useful in solving

dynamic optimization problems and optimal control problems

when the number of overlapping sub-problems grows exponen-

tially as a function of the size of the input. Dynamic programming

can be implemented using both bottom-up or top-down approaches.

In bottom-up, it starts from the base sub-problems and recursively

computes the next level sub-problems until reaching the answer

to the given problem. On the other hand, the top-down approach

starts from the given problem and uses recursion to subdivide a

problem into sub-problems until reaching the base sub-problems.

Answers to previously computed sub-problems are reused rather

than being recomputed. An advantage of the top-down approach

is that it might not need to compute all possible sub-problems.

∗ Corresponding author.

E-mail addresses: miguel-areias@dcc.fc.up.pt (M. Areias), ricroc@dcc.fc.up.pt

(R. Rocha).

However, dynamic programming has some limitations, such as,

the curse of dimensionality (Bellman, 1957) which might occur in

problems with high-dimensional spaces. One possible solution to

overcome these limitations is the usage of adaptive dynamic pro-

gramming (ADP) algorithms that approximate the optimal solution

of the cost function in the dynamic programming problem. More

recently, Zhang et al. studied the quality of the approximation of

ADP algorithms by analyzing multiple factors, such as, their con-

vergence and the execution time horizon (Zhang et al., 2013). In

this work, we focus on problems with low-dimensional spaces.

Most of the proposals that can be found in the literature to

parallelize dynamic programming problems with low-dimensional

spaces follow the parallelization of a sequential bottom-up algo-

rithm. All these proposals are usually based on a careful analy-

sis of the sequential algorithm in order to find the best way to

minimize data dependencies in the supporting data structures of

memorization, which are often a matrix or an array. The resulting

parallelization requires then a synchronization mechanism before

recursively computing the next level sub-problems. Alternatively, a

generic proposal to parallelize top-down dynamic programming al-

gorithms is Stivala et al.’s work (Stivala et al., 2010), where a set

of threads solve the entire dynamic program independently but

with a randomized choice of sub-problems. In other words, each

thread runs exactly the same function, but a randomized choice

of sub-problems results in threads diverging to compute different

http://dx.doi.org/10.1016/j.jss.2016.06.060

0164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: M. Areias, R. Rocha, On scaling dynamic programming problems with a multithreaded tabling Prolog system,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.0 6.0 60

http://dx.doi.org/10.1016/j.jss.2016.06.060
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:miguel-areias@dcc.fc.up.pt
mailto:ricroc@dcc.fc.up.pt
http://dx.doi.org/10.1016/j.jss.2016.06.060
http://dx.doi.org/10.1016/j.jss.2016.06.060

2 M. Areias, R. Rocha / The Journal of Systems and Software 0 0 0 (2016) 1–10

ARTICLE IN PRESS

JID: JSS [m5G; July 1, 2016;8:41]

sub-problems, while reusing the sub-problem’s results computed,

in the meantime, by the other threads.

Tabling (Chen and Warren, 1996) is a recognized and powerful

implementation technique that proved its viability and efficiency

to overcome Prolog’s susceptibility to infinite loops and redun-

dant computations. Tabling consists of saving and reusing the re-

sults of sub-computations during the execution of a program and,

for that, the calls and the answers to tabled subgoals are mem-

orized in a proper data structure called the table space . Tabling

can thus be viewed as a natural tool to implement dynamic pro-

gramming problems. When tabling is combined with multithread-

ing, we have the best of both worlds, since we can exploit the

combination of higher declarative semantics with higher proce-

dural control. However, such combination for dynamic program-

ming problems is very difficult to exploit in order to achieve ex-

ecution scalability as we increase the number of running threads.

To the best of our knowledge, XSB (Marques and Swift, 2008) and

Yap (Areias and Rocha, 2012b) are the only Prolog systems that

support the combination of multithreading with tabling, but none

of them showed until now to be able to scale the execution of

multithreaded dynamic programming problems. This is a difficult

task since we need to combine the explicit thread control required

to launch, assign and schedule tasks to threads, with the built-

in tabling evaluation mechanism, which is implicit and cannot be

controlled by the user.

In this work, we focus on two well-known dynamic program-

ming problems, the Knapsack and the Longest Common Subse-

quence (LCS) problems, and we discuss how we were able to scale

their execution by taking advantage of the multithreaded tabling

engine of the Yap Prolog system. For each problem, we present a

multithreaded tabled top-down and bottom-up approach. For the

top-down approach, we use Yap’s mode-directed tabling support

(Santos and Rocha, 2013) that allows to aggregate answers by spec-

ifying pre-defined modes such as min or max . For the bottom-

up approach, we use Yap’s standard tabling support (Santos Costa

et al., 2012). To the best of our knowledge, no previous Prolog sys-

tem showed to be able to scale the execution of multithreaded dy-

namic programming problems.

A key contribution of this work is our new asynchronous ver-

sion of the table space data structures, where threads view their

tables as private but are able to use the answers of a sub-problem,

if another thread has already computed them. By sharing only

completed tables, we avoid the problem of dealing with concur-

rent updates to the table space and, more importantly, the problem

of dealing with concurrent deletes, as in the case of using mode-

directed tabling.

Our experiments on a 32-core AMD machine show that using

Yap’s simple and efficient multithreaded table space design, we

were able to scale the execution of both knapsack and LCS prob-

lems for both top-down and bottom-up approaches. To put our ex-

periments in perspective, we compare our results with other sys-

tems and, in particular, we experimented with the state-of-the-art

XSB Prolog system (Marques and Swift, 2008). In general, Yap’s

speedup results are comparable and sometimes better than other

parallel implementations of the same problems. Regarding the par-

ticular comparison with XSB, Yap’s results clearly outperform those

of XSB for the execution time and for the speedups.

The remainder of the paper is organized as follows. First, we

describe some background about Yap’s standard, mode-directed

and multithreaded tabling support and discuss XSB’s approach to

multithreaded tabling. Next, for both Knapsack and LCS problems,

we introduce the problem and present in detail our parallel imple-

mentations using either a top-down and bottom-up dynamic pro-

gramming approach. Then, we present a set of experiments and

discuss the results. At the end, we discuss related work and out-

line some conclusions and further work.

Tabled Predicate
Compiled Code

Table Entry

Subgoal
Frame

call_C1

Subgoal Trie Structure

Answer
Trie

Structure

Subgoal
Frame
call_C2

Answer
Trie

Structure

Subgoal
Frame

call_Cn

Answer
Trie

Structure

. . .

. . .

Fig. 1. Yap’s table space organization.

2. Background

This section introduces some background needed for the fol-

lowing sections.

2.1. Standard tabling

The basic idea behind tabling is straightforward: programs are

evaluated by storing answers for tabled subgoals in an appropriate

data space, called the table space . Variant calls 1 to tabled subgoals

are not re-evaluated against the program clauses, instead they are

resolved by consuming the answers already stored in their table

entries. During this process, as further new answers are found,

they are stored in their tables and later returned to all variant calls.

With these requirements, the design of the table space is crit-

ical to achieve an efficient implementation. Yap uses tries which

is regarded as a very efficient way to implement the table space

(Ramakrishnan et al., 1999). Tries are trees in which common pre-

fixes are represented only once. The trie data structure provides

complete discrimination for terms and permits look up and pos-

sibly insertion to be performed in a single pass through a term,

hence resulting in a very efficient and compact data structure for

term representation. Fig. 1 shows the general table space organiza-

tion for a tabled predicate in Yap.

At the entry point we have the table entry data structure. This

structure is allocated when a tabled predicate is being compiled,

so that a pointer to the table entry can be included in its com-

piled code. This guarantees that further calls to the predicate will

access the table space starting from the same point. Below the ta-

ble entry, we have the subgoal trie structure . Each different tabled

subgoal call to the predicate at hand corresponds to a unique path

through the subgoal trie structure, always starting from the table

entry, passing by several subgoal trie data units, the subgoal trie

nodes , and reaching a leaf data structure, the subgoal frame . The

subgoal frame stores additional information about the subgoal and

acts like an entry point to the answer trie structure . Each unique

path through the answer trie data units, the answer trie nodes , cor-

responds to a different tabled answer to the entry subgoal.

1 Two terms are considered to be variant [of each other, i.e., are equivalent] if

they are the same up to variable renaming.

Please cite this article as: M. Areias, R. Rocha, On scaling dynamic programming problems with a multithreaded tabling Prolog system,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.0 6.0 60

http://dx.doi.org/10.1016/j.jss.2016.06.060

https://isiarticles.com/article/111774

