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a b s t r a c t 

Tabling is a powerful implementation technique that improves the declarativeness and expressiveness of 

traditional Prolog systems in dealing with recursion and redundant computations. It can be viewed as a 

natural tool to implement dynamic programming problems, where a general recursive strategy divides a 

problem in simple sub-problems that are often the same. When tabling is combined with multithreading, 

we have the best of both worlds, since we can exploit the combination of higher declarative semantics 

with higher procedural control. However, at the engine level, such combination for dynamic programming 

problems is very difficult to exploit in order to achieve execution scalability as we increase the number of 

running threads. In this work, we focus on two well-known dynamic programming problems, the Knap- 

sack and the Longest Common Subsequence problems, and we discuss how we were able to scale their 

execution by using the multithreaded tabling engine of the Yap Prolog system. To the best of our knowl- 

edge, this is the first work showing a Prolog system to be able to scale the execution of multithreaded 

dynamic programming problems. Our experiments also show that our system can achieve comparable or 

even better speedup results than other parallel implementations of the same problems. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Dynamic programming ( Bellman, 1957 ) is a general recursive 

strategy that consists in dividing a problem in simple sub- 

problems that, often, are the same. The idea behind dynamic 

programming is to reduce the number of computations: once an 

answer to a given sub-problem has been computed, it is memo- 

rized and the next time the same answer is needed, it is simply 

looked up. Dynamic programming is especially useful in solving 

dynamic optimization problems and optimal control problems 

when the number of overlapping sub-problems grows exponen- 

tially as a function of the size of the input. Dynamic programming 

can be implemented using both bottom-up or top-down approaches. 

In bottom-up, it starts from the base sub-problems and recursively 

computes the next level sub-problems until reaching the answer 

to the given problem. On the other hand, the top-down approach 

starts from the given problem and uses recursion to subdivide a 

problem into sub-problems until reaching the base sub-problems. 

Answers to previously computed sub-problems are reused rather 

than being recomputed. An advantage of the top-down approach 

is that it might not need to compute all possible sub-problems. 
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However, dynamic programming has some limitations, such as, 

the curse of dimensionality ( Bellman, 1957 ) which might occur in 

problems with high-dimensional spaces. One possible solution to 

overcome these limitations is the usage of adaptive dynamic pro- 

gramming (ADP) algorithms that approximate the optimal solution 

of the cost function in the dynamic programming problem. More 

recently, Zhang et al. studied the quality of the approximation of 

ADP algorithms by analyzing multiple factors, such as, their con- 

vergence and the execution time horizon ( Zhang et al., 2013 ). In 

this work, we focus on problems with low-dimensional spaces. 

Most of the proposals that can be found in the literature to 

parallelize dynamic programming problems with low-dimensional 

spaces follow the parallelization of a sequential bottom-up algo- 

rithm. All these proposals are usually based on a careful analy- 

sis of the sequential algorithm in order to find the best way to 

minimize data dependencies in the supporting data structures of 

memorization, which are often a matrix or an array. The resulting 

parallelization requires then a synchronization mechanism before 

recursively computing the next level sub-problems. Alternatively, a 

generic proposal to parallelize top-down dynamic programming al- 

gorithms is Stivala et al.’s work ( Stivala et al., 2010 ), where a set 

of threads solve the entire dynamic program independently but 

with a randomized choice of sub-problems. In other words, each 

thread runs exactly the same function, but a randomized choice 

of sub-problems results in threads diverging to compute different 
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sub-problems, while reusing the sub-problem’s results computed, 

in the meantime, by the other threads. 

Tabling ( Chen and Warren, 1996 ) is a recognized and powerful 

implementation technique that proved its viability and efficiency 

to overcome Prolog’s susceptibility to infinite loops and redun- 

dant computations. Tabling consists of saving and reusing the re- 

sults of sub-computations during the execution of a program and, 

for that, the calls and the answers to tabled subgoals are mem- 

orized in a proper data structure called the table space . Tabling 

can thus be viewed as a natural tool to implement dynamic pro- 

gramming problems. When tabling is combined with multithread- 

ing, we have the best of both worlds, since we can exploit the 

combination of higher declarative semantics with higher proce- 

dural control. However, such combination for dynamic program- 

ming problems is very difficult to exploit in order to achieve ex- 

ecution scalability as we increase the number of running threads. 

To the best of our knowledge, XSB ( Marques and Swift, 2008 ) and 

Yap ( Areias and Rocha, 2012b ) are the only Prolog systems that 

support the combination of multithreading with tabling, but none 

of them showed until now to be able to scale the execution of 

multithreaded dynamic programming problems. This is a difficult 

task since we need to combine the explicit thread control required 

to launch, assign and schedule tasks to threads, with the built- 

in tabling evaluation mechanism, which is implicit and cannot be 

controlled by the user. 

In this work, we focus on two well-known dynamic program- 

ming problems, the Knapsack and the Longest Common Subse- 

quence (LCS) problems, and we discuss how we were able to scale 

their execution by taking advantage of the multithreaded tabling 

engine of the Yap Prolog system. For each problem, we present a 

multithreaded tabled top-down and bottom-up approach. For the 

top-down approach, we use Yap’s mode-directed tabling support 

( Santos and Rocha, 2013 ) that allows to aggregate answers by spec- 

ifying pre-defined modes such as min or max . For the bottom- 

up approach, we use Yap’s standard tabling support ( Santos Costa 

et al., 2012 ). To the best of our knowledge, no previous Prolog sys- 

tem showed to be able to scale the execution of multithreaded dy- 

namic programming problems. 

A key contribution of this work is our new asynchronous ver- 

sion of the table space data structures, where threads view their 

tables as private but are able to use the answers of a sub-problem, 

if another thread has already computed them. By sharing only 

completed tables, we avoid the problem of dealing with concur- 

rent updates to the table space and, more importantly, the problem 

of dealing with concurrent deletes, as in the case of using mode- 

directed tabling. 

Our experiments on a 32-core AMD machine show that using 

Yap’s simple and efficient multithreaded table space design, we 

were able to scale the execution of both knapsack and LCS prob- 

lems for both top-down and bottom-up approaches. To put our ex- 

periments in perspective, we compare our results with other sys- 

tems and, in particular, we experimented with the state-of-the-art 

XSB Prolog system ( Marques and Swift, 2008 ). In general, Yap’s 

speedup results are comparable and sometimes better than other 

parallel implementations of the same problems. Regarding the par- 

ticular comparison with XSB, Yap’s results clearly outperform those 

of XSB for the execution time and for the speedups. 

The remainder of the paper is organized as follows. First, we 

describe some background about Yap’s standard, mode-directed 

and multithreaded tabling support and discuss XSB’s approach to 

multithreaded tabling. Next, for both Knapsack and LCS problems, 

we introduce the problem and present in detail our parallel imple- 

mentations using either a top-down and bottom-up dynamic pro- 

gramming approach. Then, we present a set of experiments and 

discuss the results. At the end, we discuss related work and out- 

line some conclusions and further work. 
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Fig. 1. Yap’s table space organization. 

2. Background 

This section introduces some background needed for the fol- 

lowing sections. 

2.1. Standard tabling 

The basic idea behind tabling is straightforward: programs are 

evaluated by storing answers for tabled subgoals in an appropriate 

data space, called the table space . Variant calls 1 to tabled subgoals 

are not re-evaluated against the program clauses, instead they are 

resolved by consuming the answers already stored in their table 

entries. During this process, as further new answers are found, 

they are stored in their tables and later returned to all variant calls. 

With these requirements, the design of the table space is crit- 

ical to achieve an efficient implementation. Yap uses tries which 

is regarded as a very efficient way to implement the table space 

( Ramakrishnan et al., 1999 ). Tries are trees in which common pre- 

fixes are represented only once. The trie data structure provides 

complete discrimination for terms and permits look up and pos- 

sibly insertion to be performed in a single pass through a term, 

hence resulting in a very efficient and compact data structure for 

term representation. Fig. 1 shows the general table space organiza- 

tion for a tabled predicate in Yap. 

At the entry point we have the table entry data structure. This 

structure is allocated when a tabled predicate is being compiled, 

so that a pointer to the table entry can be included in its com- 

piled code. This guarantees that further calls to the predicate will 

access the table space starting from the same point. Below the ta- 

ble entry, we have the subgoal trie structure . Each different tabled 

subgoal call to the predicate at hand corresponds to a unique path 

through the subgoal trie structure, always starting from the table 

entry, passing by several subgoal trie data units, the subgoal trie 

nodes , and reaching a leaf data structure, the subgoal frame . The 

subgoal frame stores additional information about the subgoal and 

acts like an entry point to the answer trie structure . Each unique 

path through the answer trie data units, the answer trie nodes , cor- 

responds to a different tabled answer to the entry subgoal. 

1 Two terms are considered to be variant [of each other, i.e., are equivalent] if 

they are the same up to variable renaming. 
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