
ScienceDirect

Available online at www.sciencedirect.com

Procedia Computer Science 111 (2017) 355–360

1877-0509 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 8th International Conference on Advances in Information
 Technology
10.1016/j.procs.2017.06.034

10.1016/j.procs.2017.06.034

© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 8th International Conference on Advances in Information
Technology

1877-0509

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2015) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 8th International Conference on Advances in Information Technology.

8th International Conference on Advances in Information Technology, IAIT2016, 19-22
December 2016, Macau, China

Application of dynamic program slicing technique in test data
generation

Mao yang honga*, Lin ruo qinb

aSouth China Institute of Software Engineering.GU,No 548,GuangCong south road, High tech Industrial Park, Conghua Economic Development
Zone,GuangZhou,510990,China

bSouth China Institute of Software Engineering.GU,No 548,GuangCong south road, High tech Industrial Park, Conghua Economic Development
Zone,GuangZhou,510990,China

Abstract

The core and key of software testing is test data generation. In the process of generating test data automatically, if the dynamic
program slicing technique is used, the efficiency of generating test data can be improved. for generating test data, The main
algorithm is as follows：First, in the program, we calculate the dynamic slice of the interest point’s variable, and get the current
value of the interest point’s variable; Then In the branch function, we use the method of minimization, and guide the adjustment
of program input. Through practical examples verify that, it is feasible for us to use dynamic program slicing technique in test
data generation.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 8th International Conference on Advances in Information
Technology.

Keywords: Dynamic program slicing;interest point;test data generation; software testing

1. Introduction

In the source program, the program slicing is composed of some statements, directly or indirectly, the statement
may affect the value of a interest point’s variable, it contains the static and dynamic slice. In all possible input values,
the static slice contains the statement which has an effect on the interest point. In a particular input, the dynamic

* Corresponding author. Tel.: 13926195641.

E-mail address: ccxthxy@126.com

Available online at www.sciencedirect.com

ScienceDirect
Procedia Computer Science 00 (2015) 000–000

 www.elsevier.com/locate/procedia

1877-0509 © 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 8th International Conference on Advances in Information Technology.

8th International Conference on Advances in Information Technology, IAIT2016, 19-22
December 2016, Macau, China

Application of dynamic program slicing technique in test data
generation

Mao yang honga*, Lin ruo qinb

aSouth China Institute of Software Engineering.GU,No 548,GuangCong south road, High tech Industrial Park, Conghua Economic Development
Zone,GuangZhou,510990,China

bSouth China Institute of Software Engineering.GU,No 548,GuangCong south road, High tech Industrial Park, Conghua Economic Development
Zone,GuangZhou,510990,China

Abstract

The core and key of software testing is test data generation. In the process of generating test data automatically, if the dynamic
program slicing technique is used, the efficiency of generating test data can be improved. for generating test data, The main
algorithm is as follows：First, in the program, we calculate the dynamic slice of the interest point’s variable, and get the current
value of the interest point’s variable; Then In the branch function, we use the method of minimization, and guide the adjustment
of program input. Through practical examples verify that, it is feasible for us to use dynamic program slicing technique in test
data generation.
© 2015 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the 8th International Conference on Advances in Information
Technology.

Keywords: Dynamic program slicing;interest point;test data generation; software testing

1. Introduction

In the source program, the program slicing is composed of some statements, directly or indirectly, the statement
may affect the value of a interest point’s variable, it contains the static and dynamic slice. In all possible input values,
the static slice contains the statement which has an effect on the interest point. In a particular input, the dynamic

* Corresponding author. Tel.: 13926195641.

E-mail address: ccxthxy@126.com

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2017.06.034&domain=pdf

356 Mao yang hong et al. / Procedia Computer Science 111 (2017) 355–360
 Mao yang hong et al./ Procedia Computer Science 00 (2015) 000–000

slice contains all the statements which may affect the interest point’s variable, It only considers a particular
execution path in the program.

Dynamic slicing is widely used, for example, it can be used in the process of debugging, testing, maintenance, etc.
The dynamic program slicing technique can be introduced into the software test data generation, because it can
improve the efficiency of the test data generation. For dynamic program slicing, it reduces the time of the executing
the program, At the same time, it maintains the dynamic behavior of the program executing, According to the
dynamic behavior, we can determine the current value of the corresponding branch function, and to guide the test
data’s adjustment based on value. Through practical examples verify that, it is feasible for us to use dynamic
program slicing technique in test data generation.

2. Test data generation process based on dynamic program slicing

Test path. A kind of important software testing method is white box testing, it also called structure testing, it is a
kind of test case design method, the box is refers to the testing software, white-box refers to box is visible, the
contents and the operation Inside the box is clear. This approach requires a comprehensive understanding of the
internal logic structure, testing all logical path, therefore, it also known as exhaustive path testing. When using this
scheme, the tester must check the internal structure of the program, starting from the logic of inspection program
and test data are obtained. The number of independent paths through the program is very much. In practical testing,
even small programs, it is difficult to do. During the test, therefore, We must choose the execution path for testing,
the execution path is Representative and most likely to find errors, this is the testing path.

 Program path and path set. Suppose path=（as as+1…at）, it is a sequence of statements in the program P, in the
process of program execution, if you meet the execution statement 1, the statement 2 can be run immediately,
among them, i=s+ 1,…,t-1. A path from as to at is the path in the program P, in the program P, we write a collection
of all the paths to pathg.

Conditional path.In the program P, appear conditional statements if - then - else sequence（as…at…au）, and
s≤t≤u, In order to illustrate the convenience, we assume that as is a if conditional statement. If as conditions was
established, the last statement is at of then branch, At this time we call path（as as+1…at）a conditional path, make a
note of conpaths.

Cycling path.In the program P, existence loop statement while (conditional) do or for (conditional) do, The
sequence of statements is（as…at…au）,and s≤t≤u. If as is a loop statement, at is the last statement in the loop; if
exist, au is the first statement in the loop in vitro, we call （as as+1…at）a cycling path, and make a note of sttestpath .

Test node and non - test node. Program P contains the longest test path testpathst. It also has a test path tsetpathef
belong to the path set pathg, and it is included in the testpathst, and testing path is more than one, that is tsetpathef∈
pathg，tsetpathef

⊆ testpathst，testpathst -tsetpathef ≠Ø. We called the statement ai corresponding node test nodes,
and statement ai in the longest path testpathst. and make a note of testnodeai. Otherwise it is not a test node, it exist
relation of more than one to one between test node testnodeai and statement ai, non test node aj and statement aj exist
one to one relationship. In general, statements and nodes do not distinguish, Only when there exist a test path.

In the search for a test path, If there exist two or more than two longest test paths, and they have the same start
and end nodes, Attach small marks at the testpathst, and make a note of testpathst1 and testpathst2. Here, we need a
special note, The test path defined here is different from the traditional sense of "executable path". Such as loop
subroutine, Cycle conditions are established and not established there is a test path, And the traditional sense of
"executable path" is determined by the number of cycles, there may be numerous. First, we select the partial path in
the program as the test path, and then analyze the dependency between nodes. From the above theory, as long as
there is a loop or branch structure of the program P, there is a corresponding test path and test node, We can know
from the definition of 3 and 2, If the program contains a branch condition or loop condition ai, then exist two test
nodes testnodeai and testnodeak at least.

First of all, in the input field, we enter a data d, and according to the data, then execute the program waiting for
the test. We find out the difference about the program's specific path and the actual execution path. Because the
predicate’s current value is different, the program will be executed along a different path, so the difference will
appear in a statement, and the statement is within the scope of the predicate, and the predicate exists in the program.
We put the predicate as a interest point s, program input is d, in the program, the variable’s subset is v. We construct

https://isiarticles.com/article/111778

