
Improving matrix-based dynamic programming on massively
parallel accelerators$

David Bednárek, Michal Brabec, Martin Kruliš n

Parallel Architectures/Algorithms/Applications Research Group, Faculty of Mathematics and Physics, Charles University in Prague,
Malostranské nám. 25, Prague, Czech Republic

a r t i c l e i n f o

Article history:
Received 1 December 2015
Received in revised form
6 May 2016
Accepted 3 June 2016

Keywords:
Parallel
Multicore
GPU
Intel Xeon Phi
Dynamic programming
Edit distance
Dynamic time warping

a b s t r a c t

Dynamic programming techniques are well-established and employed by various practical
algorithms, including the edit-distance algorithm or the dynamic time warping algorithm.
These algorithms usually operate in an iteration-based manner where new values are
computed from values of the previous iteration. The data dependencies enforce syn-
chronization which limits possibilities for internal parallel processing. In this paper, we
investigate parallel approaches to processing matrix-based dynamic programming algo-
rithms on modern multicore CPUs, Intel Xeon Phi accelerators, and general purpose GPUs.
We address both the problem of computing a single distance on large inputs and the
problem of computing a number of distances of smaller inputs simultaneously (e.g., when
a similarity query is being resolved). Our proposed solutions yielded significant
improvements in performance and achieved speedup of two orders of magnitude when
compared to the serial baseline.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic programming is a well established technique
employed when a problem is defined using a recursive
formula whose naïve application would lead to an algo-
rithm with exponential time complexity. If the sub-
problems overlap, the dynamic programming approach
can prune out redundant work, so that each subproblem is
computed at most once and the time complexity is
reduced to polynomial. On the other hand, algorithms

based on dynamic programming are usually difficult to
parallelize, since the subproblems are interdependent –

i.e., each subproblem requires the results of previous
subproblems.

In this work, we focus on dynamic programming
algorithms whose subproblems can be organized in a two-
dimensional matrix. Each partial result in the matrix is
computed from a small subset of previous results, which
permits a limited degree of concurrent evaluation. For
instance, if xi;j is the result value of subproblem (i,j) and f i;j
is the function computing it, the problem formula may
look like

xi;j ¼ f i;jðxi�1;j; xi�1;j�1; xi;j�1Þ:
Typical examples of such algorithms are the Wagner–
Fischer dynamic programming algorithm [3] for the edit
distance problem originally described by Levenshtein [4],
the dynamic time warping [5] (DTW), or the Smith–
Waterman algorithm [6] for molecular sequence align-
ment. The matrix shape of their subproblem spaces stems
from the fact that these algorithms are designed to

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.06.001
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

☆ This paper is an extension of two previous papers On Parallel Eva-
luation of Matrix-Based Dynamic Programming Algorithms [1] and
Improving Parallel Processing of Matrix-based Similarity Measures on
Modern GPUs [2] of the same authors. In this extension, we describe the
problem and our solution in more detail, provide an analysis of the data
dependencies, include multi-distance solution for multicore CPUs and
Xeon Phi devices, and present significantly more thorough empirical
evaluation and comparison of utilized platforms.

n Corresponding author.
E-mail addresses: bednarek@ksi.mff.cuni.cz (D. Bednárek),

brabec@ksi.mff.cuni.cz (M. Brabec), krulis@ksi.mff.cuni.cz (M. Kruliš).

Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎

Please cite this article as: D. Bednárek, et al., Improving matrix-based dynamic programming on massively
parallel accelerators, Information Systems (2016), http://dx.doi.org/10.1016/j.is.2016.06.001i

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
mailto:bednarek@ksi.mff.cuni.cz
mailto:brabec@ksi.mff.cuni.cz
mailto:krulis@ksi.mff.cuni.cz
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001


compare a pair of sequences; this purpose in turn implies
their significance as a distance or similarity measure in
similarity search.

In parallel programming, the applicability of a parti-
cular parallelizing strategy depends on many factors,
including typical data sizes, usage scenarios and, of course,
the hardware architecture. In this paper, we study two
scenarios which occur in similarity search: evaluating
distance of a pair of sequences and simultaneous evalua-
tion of a set of distances between a given (query) sequence
and a set of (database) sequences. We investigated the two
scenarios in three parallel hardware environments: Mul-
ticore CPUs with SIMD1 support, manycore CPUs (Intel
Xeon Phi), and GPU devices.

1.1. Problem details

We have selected the Wagner–Fischer dynamic pro-
gramming algorithm [3] for the Levenshtein distance
problem as a representative for our implementation since
its computational simplicity emphasizes the communica-
tion and synchronization overhead associated with paral-
lel computations. However, we will not employ any opti-
mizations designed specifically for the Levenshtein dis-
tance (like the Myers' algorithm [7]), so our proposed
improvements are applicable for other dynamic program-
ming algorithms with similar data-dependency pattern.

Functions f i;j employed in these distances are often
very simple. In the case of the Wagner–Fischer dynamic
programming algorithm [3] for the Levenshtein distance,
the function involves only comparison, incrementation,
and minimum:

f i;jðp; q; rÞ ¼minðpþ1; qþ1�δv½j�u½i�; rþ1Þ;

where the Kronecker δ compares the i-th and j-th posi-
tions in the input strings u and v respectively.

The dependencies between individual invocations of
the formula f significantly limit the parallelism available in
the problem. For a M � N matrix (i.e., inputs of size M and
N respectively), at most minðM;NÞ elements may be
computed in parallel using the diagonal approach illu-
strated in Fig. 1. Therefore, when the computation of f does
not take orders of magnitude more time than the data
exchange, a pure diagonal approach cannot be effectively
employed on current CPU and GPU architectures. On the
other hand, the diagonal approach gives us basis for pro-
cessing subsections of the distance matrix using SIMD
instructions (in the case of CPU and Intel Xeon Phi) or
threads running in lockstep (in the case of GPU).

Current parallel architectures employ multiple levels of
parallelism. The CPU architectures offer multiple cores
processing independent threads, while each core also
offers special SIMD instructions for low-level data paral-
lelism. Similarly, the GPUs are composed of multi-
processors, which can process different kernels, while each
multiprocessor is comprised of tightly coupled cores,
which share most of the resources including instruction

schedulers. Therefore, our solution will also present a
model which employs two levels of parallelism.

Finally, let us point out that in most applications
including similarity measures, the only expected result is
the computed distance, which is the bottom-right element
of the matrix. Hence, the matrix does not have to be
completely materialized in memory. For instance, if pro-
blem is being solved by the diagonal method presented in
Fig. 1, only values of two last diagonals are required to
compute next diagonal. This observation is quite impor-
tant for our implementation as it allows us to perform
optimizations such as keeping matrix values only in reg-
isters or specialized caches (like shared memory of
the GPU).

1.2. Contributions and paper structure

This paper investigates the problems of matrix-based
dynamic programming similarity measures on current
parallel architectures, namely

� multicore CPUs,
� Intel Xeon Phi parallel accelerators,
� and general purpose GPUs.

The basic idea is based on aggregating subtasks of the
matrix into regular parallelograms, which can be pro-
cessed independently and also parallelized internally. A
GPU implementation using this technique was first pre-
sented by Tomiyama et al. [8]. We have improved the
original approach in several ways:

� We have tested the algorithm on current hardware and
adjusted its parameters for current generations of GPUs.

� New optimizations were employed including better
data caching and more efficient data exchange using
new warp shuffle instructions (introduced in CUDA
compute capability 3.0).

� The approach was adopted for multicore CPUs and Intel
Xeon Phi devices, where GPU thread warps (i.e., threads
running in lockstep) are replaced with SIMD instruc-
tions.

In addition, we have investigated possible parallelization
approaches to a multi-distance problem – i.e., when there
are multiple jobs to be computed in parallel where each
job consists of computing the distance of a pair of objects.
This situation is typical for similarity queries, when dis-
tances between a query and all database objects need to be
computed, or when pivot-based index is being constructed
and distances between vantage objects and database
objects are being computed. Even though this may seem
to be an embarrassingly data parallel problem, the asso-
ciated ratio between the memory and the CPU loads
imposes serious performance limitations when executed
on manycore GPUs and Intel Xeon Phi devices. Thus, we
investigated the necessary trade-off between the memory-
consuming parallelism among independent distance-
computing jobs and the limited parallelism available
inside one job.1 Single instruction multiple data parallel paradigm.

Please cite this article as: D. Bednárek, et al., Improving matrix-based dynamic programming on massively
parallel accelerators, Information Systems (2016), http://dx.doi.org/10.1016/j.is.2016.06.001i

D. Bednárek et al. / Information Systems ∎ (∎∎∎∎) ∎∎∎–∎∎∎2

http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001
http://dx.doi.org/10.1016/j.is.2016.06.001


https://isiarticles.com/article/111781

