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a b s t r a c t 

This paper integrates game theory, optimal control theory and reinforcement learning to deal with the 

discrete-time (DT) multi-player non-zero-sum game issue. As is known, the solutions to non-zero-sum 

game problems are the outcomes of coupled Riccati equations or coupled Hamilton–Jacobi ones, which 

are generally difficult to solve analytically and require the knowledge of accurate system mathematical 

models. However, for most practical industrial systems, the system dynamics cannot be obtained accu- 

rately or even unavailable, and the conventional model-based methods will be invalid. To overcome this 

deficiency, we develop data-based adaptive dynamic programming (ADP) algorithms for completely un- 

known multi-player systems. Firstly, the Nash equilibrium and stationarity conditions are used to formu- 

late the DT multi-player non-zero-sum game, and then policy iteration algorithm is applied to approx- 

imate optimal solutions successively. Secondly, a novel online ADP algorithm combined with a neural- 

network-based identification scheme is designed and only requires the system data instead of the real 

system models. Subsequently, a data-driven action-dependent heuristic dynamic programming approach 

is presented and circumvents the estimation errors caused by the identification learning procedure. Fi- 

nally, two simulation examples are provided to illustrate the feasibility of our schemes. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Dynamic programming is a conventional approach in dealing 

with optimal control problems and computes the optimal solutions 

backward-in-time [1] . However, it is computationally untenable to 

achieve the results due to the well-known “curse of dimensional- 

ity” [2] . As a brain-like intelligent method, adaptive dynamic pro- 

gramming (ADP) [3–10] with the abilities of adaptivity and self- 

learning is an important branch of reinforcement learning (RL) 

[11–14] and able to compute the solution forward-in-time. So far, 

ADP has successfully addressed various optimal control issues for 

both continuous-time (CT) and discrete-time (DT) systems, such 

as optimal tracking control [15–19] , finite-horizon optimal con- 

trol [20–24] , robust optimal control [25–28] , optimal control with 

time-delays [29–31] and constrained inputs [32–34] , and optimal 

control applied on nonaffine systems [35,36] , Markov jump sys- 

tems [37,38] and power systems [39,40] . 

It is worth mentioning that most traditional ADP methods re- 

quire accurate mathematical models of system dynamics. How- 
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ever, in the practical industrial systems, system models are diffi- 

cult to attain accurately, and the model-based ADP methods can 

not be directly applied in the real world control processes. For- 

tunately, input–output system data can be measured and utilized, 

which motivates the development of data-driven control tech- 

niques [41,42] . There are two mainstream data-driven schemes 

within the scope of ADP. The first approach employs accessed 

system data to design optimal controllers directly [43,44] , and 

the second one is to reconstruct data-driven system structures 

through neural networks (NNs) to approximate the real system 

ones [45,46] . 

Recently, researchers have attempted to bring together ADP ap- 

proaches and the game theory to investigate multi-player game 

problems, such as graphical games, zero-sum and non-zero-sum 

games. As is known, the solutions to the general optimal con- 

trol problems are Riccati and Hamilton–Jacobi–Bellman (HJB) equa- 

tions for linear and nonlinear systems, respectively. Two-player 

zero-sum games are usually employed to describe robust H ∞ 

con- 

trol issues, and due to the disturbance input term, the solutions, 

i.e., Hamilton–Jacobi–Isaacs (HJI) equations are more difficult than 

HJB ones [47–49] . In addition, the game theory and reinforcement 

learning have been applied on multi-agent systems to formulate 

and solve graphical games. In [50] , the online adaptive learning 

solutions to differential graphical games were obtained by em- 
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ploying reinforcement learning methods. Afterwards, the idea of 

Vamvoudakis et al. [50] was applied and extended to different 

cases of heterogeneous linear multi-agent systems [51] , nonlinear 

multi-agent systems [52] , disturbance rejection [53] and DT graph- 

ical games [54] . 

Among the practical engineering applications, a large class of 

real world systems have more than one controller, such as net- 

worked communication systems, coupled large-scale systems and 

microgrid systems. The optimal control issue of these systems with 

multiple controllers can be formulated by the non-zero-sum game 

theory, which was originally investigated in [55] and has a great 

number of promising applications in military, economics and con- 

trol engineering. The non-zero-sum game aims to produce a set of 

optimal control policies to form the Nash equilibrium, which can 

not only minimize the individual performance index function for 

each player but also guarantee the stability of the systems [56] . For 

the linear non-zero-sum game systems, one needs to solve a set of 

coupled Riccati equations to obtain the Nash equilibrium. For the 

nonlinear cases, more complicated coupled Hamilton–Jacobi (HJ) 

equations are required to be solved to achieve the results. Unfortu- 

nately, it is generally difficult to get global solutions [57] . In order 

to overcome this difficulty, many ADP-based approaches have been 

proposed to approximate the optimal solutions of non-zero-sum 

games [57–61] . In [57] , a policy iteration (PI) based online adaptive 

learning algorithm implemented by critic and actor networks was 

proposed to solve coupled HJ equations of CT non-zero-sum games. 

Based on the theoretical framework formulated by the work [57] , 

a single network ADP algorithm was designed instead of the tradi- 

tional dual network architecture and successfully reduced the com- 

putational burden in [58] . Identification schemes with the online 

synchronous approximate optimal learning approach and the ex- 

perience replay technique were presented for unknown CT systems 

in [59] and [60] , respectively. In [61] , the data-driven off-policy in- 

tegral reinforcement learning method was extended to the model- 

free non-zero-sum games without any identification processes. The 

aforementioned Refs. [57–61] all considered the CT non-zero-sum 

game issues. However, there are still few works concerning DT ver- 

sion. 

This paper combines ADP algorithms and data-driven tech- 

niques to address model-free DT non-zero-sum game problems. 

Firstly, the Nash equilibrium and stationarity conditions of opti- 

mization are employed to derive and formulate the DT non-zero- 

sum game, and develop the PI scheme to learn and approximate 

the optimal solutions iteration by iteration in Section 2 . Secondly, 

two ADP algorithms, an identification-based one and a direct data- 

driven one, are proposed in Section 3 and Section 4 , respectively. 

Thirdly, Section 5 provides two numerical simulation examples to 

demonstrate the feasibility of our proposed approaches. Finally, a 

brief conclusion is drawn in Section 6 . 

2. Problem statement 

Let us consider the discrete-time N -player system as follows: 

x (k + 1) = f (x (k )) + 

N ∑ 

j=1 

g j (x (k )) u j (k ) (1) 

where x (k ) ∈ � ⊂ R 

n denotes the system state and u j (k ) ∈ R 

m j 

represents the control input; f (x ) ∈ R 

n and g j (x ) ∈ R 

n ×m j are the 

system functions. 

The performance index function associated with each player is 

described by 

J i (x (0) , u 1 , u 2 , . . . , u N ) = 

∞ ∑ 

p=0 

r i (x (p) , u i (p) , u (−i ) (p)) (2) 

where u (−i ) = 

{
u j : j = 1 , 2 , . . . , N, j � = i 

}
; r i (x (p) , u i (p) , u (−i ) (p)) 

= x T (p) Q i x (p) + u T 
i 
(p) R ii u i (p) + 

∑ N 
j =1 , j � = i u 

T 
j 
(p) R i j u j (p) with the 

symmetric positive definite weight matrices Q i > 0, R ii > 0 and 

R ij > 0. 

Definition 1. [57] (Admissible control) For ∀ i , the control policy 

u i ( x ) ∈ ψ( �) is admissible with respect to (2) on the compact set 

� ⊂ R 

n , if u i ( x ) can not only make (1) stable but also guarantee 

(2) finite. 

Assumption 1. The N -player system (1) is controllable and there 

exists at least one set of admissible control policies. 

Given admissible state feedback control policies u i ( x ) for ∀ i , the 

value function is given by 

V i (x (k )) = 

∞ ∑ 

p= k 
r i (x (p) , u i (p) , u (−i ) (p)) . (3) 

Define the optimal value function as 

V 

∗
i (x (k )) = min 

u i 

∞ ∑ 

p= k 
r i (x (p) , u i (p) , u (−i ) (p)) . (4) 

Definition 2. [60] (Nash equilibrium) A set of control policies {
u ∗

1 
, u ∗

2 
, . . . , u ∗

N 

}
is regarded as the solution to a Nash equilibrium 

of the N -player game, if, for ∀ i , the inequality holds as below 

J ∗i 
�= J i (u 

∗
1 , u 

∗
2 , . . . , u 

∗
i , . . . , u 

∗
N ) ≤ J i (u 

∗
1 , u 

∗
2 , . . . , u i , . . . , u 

∗
N ) . (5) 

Lemma 1. Let us consider the N-player system (1) along with the 

value function (3). Based on the stationarity conditions of optimiza- 

tion, for ∀ i , one can get optimal control policy 

u 

∗
i (k ) = −1 

2 

R 

−1 
ii 

g T i (x (k )) ∇V 

∗
i (x (k + 1)) (6) 

where ∇V ∗
i 
(x (k + 1)) = ∂ V ∗

i 
(x (k + 1)) /∂x (k + 1) and, for ∀ i , V ∗

i 
(x ) 

satisfies the coupled equation as below 

V 

∗
i (x (k )) = V 

∗
i (x (k + 1)) + x T (k ) Q i x (k ) 

+ u 

∗T 
i (k ) R ii u 

∗
i (k ) + 

N ∑ 

j =1 , j � = i 
u 

∗T 
j ( k ) R i j u 

∗
j ( k ) . (7) 

Proof. In light of Definition 2 and related works [54,56,57] , 

Lemma 1 can be easily derived. �

Theorem 1. Let Assumption 1 hold. Let V ∗
i 
(x ) satisfy the coupled Eq. 

(7) and each control policy u ∗
i 
(x ) use the form of (6). Then, one has 

1. The dynamics of the system (1) are asymptotically stable; 

2. The game value of each player is expressed as 

J ∗
i 
(x (k ) , u ∗

i 
(k ) , u ∗

(−i ) 
(k )) = V ∗

i 
(x (k )) ; 

3. The control policies u ∗
i 

and u ∗
(−i ) 

constitute a Nash equilibrium. 

Proof. 1. Since V ∗
i 
(x (k )) satisfies (7), it can be acquired that 

V 

∗
i (x (k + 1)) − V 

∗
i (x (k )) 

= − x T (k ) Q i x (k ) − u 

∗T 
i (k ) R ii u 

∗
i (k ) −

N ∑ 

j =1 , j � = i 
u 

∗T 
j (k ) R i j u 

∗
j (k ) ≤ 0 . (8) 

which implies V ∗
i 
(x (k )) can serve as Lyapunov function, and the 

dynamics of the system (1) are asymptotically stable. 

2. Rewrite the performance index function (2) by adding and 

subtracting V i ( x ( k )) as 

J i (x (k ) , u 1 , u 2 , . . . , u N ) = 

∞ ∑ 

p= k 
r i (x (p) , u i (p) , u (−i ) (p)) 

−V i (x (k )) + V i (x (k )) . (9) 

For ∀ i , let u i = u ∗
i 

for both J i (x (k ) , u 1 , u 2 , . . . , u N ) and V i ( x ( k )). 

According to (2) and (3), one can obtain 
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