
IFAC PapersOnLine 50-1 (2017) 8435–8440

ScienceDirectScienceDirect

Available online at www.sciencedirect.com

2405-8963 © 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2017.08.735

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

10.1016/j.ifacol.2017.08.735 2405-8963

A Consensus Approach to Dynamic Programming

Mattia Laurini ∗ Luca Consolini ∗ Marco Locatelli ∗

∗ Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma,
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Abstract: Motivated by the finite element formulation of the Hamilton-Jacobi-Bellman (HJB) equation,
we introduce a consensus algorithm to compute the solution of a class of optimization problems that can
be solved with a fixed point iteration. The proposed algorithm reduces the computational cost in terms
of elementary operations with respect to a complete fixed point iteration. We provide theoretical results
on maximum error rate and on the convergence of the algorithm. As an application, we compute the
minimum-time solution for a parking maneuver of a car-like vehicle, comparing the fixed point iteration
with the consensus iteration.
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1. INTRODUCTION

Consider a control system of the form{
ẋ(t) = f (x(t),u(t))
x(0) = x0,

where f is a continuous function, x0 is the initial state, u(t) ∈U
is the control input and U is a compact set of admissible
controls. A fundamental problem in control consists in finding
the control function u that minimizes the infinite horizon cost
functional

Jx0(u) :=
∞∫

0

l(x(t),u(t))dt.

where l is a continuous cost function.

A general method for addressing this problem is given by
the Hamilton-Jacobi-Bellman (HJB) equation, which is consid-
ered by many works in control applications, such as Bertsekas
(1995), Grüne and Semmler (2004) or Luus (1994). In general,
it is not possible to obtain a closed form solution of the HJB
equation because it is a nonlinear partial differential equation.
Thus, many works provide numerical procedures, see for in-
stance Wang et al. (2000), Liu and Wei (2013), Al-Tamimi et al.
(2008), Bian et al. (2014) or Jiang and Jiang (2014). As can
be seen in Appendix A of Bardi and Capuzzo-Dolcetta (2008),
we will briefly recall that, under some approximations, it is
possible to obtain the solution of the HJB equation as the limit
for k → ∞ of a fixed point iteration of the form{

x(k+1) = min
p=1,...,M

{
Apx(k)+bp

}

x(0) = x0,
(1)

where, for p = 1, . . . ,M, Ap are sparse positive matrices and bp
are positive vectors. Note that, in (1), the minimum operation
is performed component-wise, (i.e., for each component of the
vector Apx(k)+bp, a different value of p can be chosen).

It is well known that the convergence rate of iteration (1)
is rather poor. Thus, in literature, some works provide an
acceleration policy, that is, a second iteration that converges
faster to the same limit as (1). As an example, Anderson (1965)

presents such an iteration for general fixed point iterations;
whilst Alla et al. (2015) and Laurini et al. (2016) introduce
acceleration policies designed specifically for (1).

In this paper, we present an algorithm inspired by broadcast-
based consensus aimed at reducing the computational cost of
iteration (1) in terms of row-column product operations. In
fact, when applying iteration (1), all coordinates values of x are
updated even though it many not be necessary. Considering the
coordinates of x as the nodes of a communication graph, the
proposed algorithm updates only those nodes whose neighbors
have undergone a sufficiently large variation in their value in
the previous iteration. Namely, the nodes communicate their
value to their neighbors only when the variation they have
undergone is relevant. This is somehow similar to broadcast-
based consensus algorithms, such as those presented in Aysal
et al. (2009) and Franceschelli et al. (2010).

The work is organized as follows: in section 2 we introduce the
problem of the numerical solution of HJB equation and show
that it is an instance of problem (1), in section 3 we formulate
the consensus iteration, in section 4 we state the main result, in
section 5 we present both the algorithm based on fixed point
iteration and on consensus iteration, and in Appendix A we
provide the proof of convergence of the introduced algorithm.
As an example, in section 6, we show the computational advan-
tages of the algorithm in computing the minimum-time solution
of a parking maneuver for a car-like vehicle with bounded
velocity and steering angle.

Notation. By R+ we denote the interval [0,+∞). Let x ∈ RN

and A ∈ RN×M , ∀ i ∈ {1, . . . ,N} we denote the i-th component
of x with [x]i and the i-th row of A with [A]i:. Further, ∀ j ∈
{1, . . . ,M} we denote the j-th column of A with [A]: j. Function
‖ · ‖ : RN → R+ is the infinity norm, namely the maximum
norm, of RN (i.e., ∀ x ∈ RN ‖x‖ = max

i=1,...,N
|[x]i|); ‖ · ‖ is also

used to denote the induced matrix norm. Symbol ∅ denotes the
empty set. A directed multigraph G is a triple (V ,E , f ), where
V is a set whose elements are called nodes (or vertices), E a set
of ordered pairs of nodes of V called edges and f : E → V 2 is
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Parco Area delle Scienze 181/a, 43124 Parma, Italy (e-mail:

mattia.laurini@studenti.unipr.it, {luca.consolini, marco.locatelli}@unipr.it).

Abstract: Motivated by the finite element formulation of the Hamilton-Jacobi-Bellman (HJB) equation,
we introduce a consensus algorithm to compute the solution of a class of optimization problems that can
be solved with a fixed point iteration. The proposed algorithm reduces the computational cost in terms
of elementary operations with respect to a complete fixed point iteration. We provide theoretical results
on maximum error rate and on the convergence of the algorithm. As an application, we compute the
minimum-time solution for a parking maneuver of a car-like vehicle, comparing the fixed point iteration
with the consensus iteration.

Keywords: dynamic programming, communication networks, directed graphs, optimization problems,
nonlinear systems, numerical methods, convergence proofs.

1. INTRODUCTION

Consider a control system of the form{
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a mapping assigning to every edge its ends. Note that in direct
multigraphs it may be that

∃ e1,e2 ∈ E : (e1 �= e2 ∧ f (e1) = f (e2))

or
∃ e ∈ E : ∃ i ∈ V : f (e) = (i, i),

that is, multiple edges (edges sharing the same ends) are al-
lowed as well as self-loops (edges whose ends coincide with a
single vertex). As an example one can refer to Figure 1 which
represents a four nodes direct multigraph G = (V ,E , f ), where
V = {1,2,3,4}, with multiple edges and self-loops.

1

2

3

4

Fig. 1. Directed multigraph with four nodes.

Given a directed multigraph G = (V ,E , f ), let us define, ∀ i ∈
V , the set of direct successors of node i

N (i) := { j ∈ V : ∃ e ∈ E : f (e) = (i, j)}
and the set of direct predecessors of node i

N −1(i) := { j ∈ V : ∃ e ∈ E : f (e) = ( j, i)}.

2. PROBLEM MOTIVATION

In this section we show that problem (1) is associated to the nu-
merical solution of the HJB equation. For an extensive discus-
sion, see Appendix A of Bardi and Capuzzo-Dolcetta (2008).
Let us consider a control system defined by the following dif-
ferential equation in Rn:{

ẋ(t) = f (x(t),u(t))
x(0) = x0,

where f : Rn ×U →Rn is a continuous function, x0 ∈Rn is the
initial state, u = u(t) ∈ U ⊂ Rm is the control input and U is a
compact set of admissible controls. Let us consider an infinite
horizon problem defined by the functional

Jx0(u) =
∞∫

0

l(x(t),u(t))e−λ tdt, (2)

where l :Rn×U →R is a continuous cost function and constant
λ > 0 is the viscosity parameter. Let us define the value
function v : Rn → R as follows:

v(x0) = inf
u∈U

Jx0(u).

We refer to Bardi and Capuzzo-Dolcetta (2008) for a proof of
the fact that the value function v is the unique viscosity solution
of HJB equation:

λv(x)+ sup
u∈U

{−Dv(x) f (x,u)− l(x,u)}= 0, x ∈ Rn, (3)

where Dv denotes the gradient of v.
Equation (3), in general, does not admit a closed form solu-
tion, so one needs to apply a numerical method in order to
compute an approximate solution. For instance, the scheme
presented in Bardi and Capuzzo-Dolcetta (2008) relies on a
finite dimensional approximation of state and control spaces

and a discretization in time. More precisely, in (3) one can
approximate Dv(x) f (x,u)� h−1(v(x+h f (x,u))−v(x)), where
h > 0 represents an integration time. So by approximating
(1+λh)−1 � (1−λh), (1+λh)−1h � h one obtains the HJB
equation in discrete time:
vh(x) = min

u∈U
{(1−λh)vh(x+h f (x,u))+hl(x,u))}, x ∈ Rn.

Moreover, if one considers a triangulation on a finite set of
vertices S = {xi} ⊂ Rn, i = 1, . . . ,N, function v can be ap-
proximated by a linear function of the finite set of variables
vh(xi), i = 1, . . . ,N. It is also possible to discretize the control
space, substituting U with a finite set of controls {u1, . . . ,uM},
obtaining eventually the following formulation

vh(xi) = min
up

{(1−λh)vh(xi +h f (xi,up))+hl(xi,up))},

i = 1, . . . ,N and p = 1, . . . ,M.
(4)

For a wider and more detailed dissertation see Bardi and
Capuzzo-Dolcetta (2008).
Set vector x� := [vh(x1),vh(x2), . . . ,vh(xN)], in this way x� ∈RN

represents the value of the cost function on the grid points. Note
that, for each xi,up, the right-hand side of (4) is affine with
respect to x�, so that problem (4) can be rewritten in form

x� = min
p=1,...,M

{Apx�+bp}, (5)

where, for p = 1, . . . ,M, Ap ∈ RN×N
+ are suitable nonnegative

matrices and bp ∈ RN
+ are suitable nonnegative vectors. Define

map T : RN
+ → RN

+ as
T (x) := min

p=1,...,M
{Apx+bp}. (6)

In Bardi and Capuzzo-Dolcetta (2008) it is shown that T is
a contraction, so (5) can be solved as a fixed point iteration.
Namely, setting {

x(k+1) = T (x(k)),
x(0) = x0,

(7)

the solution x� of (5) is obtained as
x� = lim

k→∞
x(k),

for any initial condition x0.

3. PROBLEM FORMULATION

Our aim is to provide a procedure that allows reducing the
computational cost of iteration (7) in terms of row-column
product operations. When applying iteration (7), the value of
all nodes is updated even though many nodes values may
undergo a negligible variation. So the main idea is to update
only those nodes whose at least one of the direct predecessors
has undergone a sufficiently large variation in its value in the
previous iteration. To this end, we may consider the vertices
indices of triangulation S as the nodes of a multigraph. Let
G = (V ,E , f ) be a direct multigraph with V := {1, . . . ,N} and
E satisfying the following statement: ∀ p = 1, . . . ,M,∀ i, j ∈ V

[Ap]i j �= 0 ⇔∃ e ∈ E : f (e) = (i, j).

Given a tolerance ε > 0, let us define Hε : RN
+×RN

+ → RN
+ as

follows: ∀ x,y ∈ RN
+,∀ i ∈ V

[Hε(x,y)]i :=

{
[T (y)]i, if ∃ j ∈ N −1(i) :

∣∣∣[y] j − [x] j

∣∣∣> ε
[y]i, otherwise,

(8)

where T is defined in (6). And consider the following sequence
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x̃ε(k+2) = Hε(x̃ε(k), x̃ε(k+1))
x̃ε(1) = T (x0)

x̃ε(0) = x0,

(9)

where ∀ i ∈ {1, . . . ,N}

[x0]i =

max
p=1,...,M

∥∥bp
∥∥

1− γ
, (10)

and γ < 1 is the Lipschitz constant of T . Note that this choice
of x0 is such that ∀ i ∈ V [x0]i ≥ [x�]i, in fact,

‖x�‖=
∥∥∥∥ min

p=1,...,M
Apx�+bp

∥∥∥∥≤

≤
∥∥∥∥ max

p=1,...,M
Apx�

∥∥∥∥+
∥∥∥∥ max

p=1,...,M
bp

∥∥∥∥≤

≤γ ‖x�‖+ max
p=1,...,M

∥∥bp
∥∥ ,

from which follows that

‖x�‖ ≤
max

p=1,...,M

∥∥bp
∥∥

1− γ
.

Sequence (9) represents the procedure described earlier in
which a node value is updated only if at least one of its direct
predecessors value has changed more than the threshold ε . In
other words, the procedure can be described as follows:

(1) Set x̃ε(0) := x0, x̃ε(1) := T (x0) and k = 2.
(2) Set I := {i ∈ V : |[x̃ε(k)]i − [x̃ε(k−1)]i|> ε}.
(3) If |I| > 0, then ∀ i ∈ I update N (i), increment k and go

to (2). Otherwise, stop.

In the following, we will show that sequence (9) converges to
the same limit as (7) but requiring a lower number of row-
column product operations.

Now, if we think about G as a communication network, through
iteration (9), at each step, we choose a set of nodes which
broadcast their value to their direct successors, whilst all other
nodes maintain their value unchanged. We will show that the
network converges to an equilibrium state that is the solution
of (7). This method resembles the broadcast-based consensus
algorithms presented in works such as Aysal et al. (2009)
and Franceschelli et al. (2010). This is why, in the following,
we call (9) consensus iteration.

4. MAIN RESULT

In the following, we will show that for any ε > 0, iteration (9)
is convergent to a certain x̃�ε ∈ RN . Moreover the choice of a
smaller ε leads to a value of x̃�ε that is closer to the fixed point
x� of (5). More formally, the main result of this work is the
following one, whose proof will be presented in Appendix A.
Theorem 1. If ∀ p ∈ {1, . . . ,M}

∥∥Ap
∥∥ ≤ γ , with γ < 1, and T

is defined as in (6), then the sequence of (8)–(9) is such that for
any ε > 0, the limit

lim
k→∞

x̃ε(k),

exists finite and, setting x̃�ε := lim
k→∞

x̃ε(k), it holds that

lim
ε→0

x̃�ε = x�. (11)

Moreover, ∀ ε > 0, the following inequality holds

‖x̃�ε − x�‖ ≤ 2ε
1− γ

.

In other words, as ε → 0, x̃�ε tends to x� and the error norm is
bounded from above by 2ε

1−γ .

5. ALGORITHMS

In this section we present the algorithms through which one can
compute the approximated fixed point given a certain tolerance
ε > 0. Algorithm 1 describes the classical fixed point iteration
whilst Algorithm 2 illustrates the consensus iteration (8)–(9) for
reducing the number of row-column product operations. Both
algorithms are written in pseudocode.

Algorithm 1. Fixed Point Iteration.
1: INPUT: initial vector x0, maximum number of iteration

MAX, tolerance ε , number of nodes N, number of controls
M, matrices Ap and vectors bp for p = 1, . . . ,M.

2: OUTPUT: vector x.
3: x = x0;
4: X ∈ RN×M : ∀ i ∈ {1, . . . ,N},∀ j ∈ {1, . . . ,M} [X ]i j = 0;
5: for k = 1, . . . ,MAX do
6: for p = 1, . . . ,M do
7: [X ]:p = Apx+bp;
8: end for
9: xold = x;

10: x = row-wise minimum of X ;
11: res = |x− xold|;
12: if (max{res}< ε) then
13: break
14: end if
15: end for
16: return x

6. NUMERICAL EXPERIMENTS

As an application, we will compute the numerical solution of
the HJB equation for solving a parking problem with both
the fixed point iteration (7) and the consensus iteration (9);
then we will compare the number of row-column product
operation required by both iteration. In order to do that, let us
introduce the kinematic car-like model with rear-wheel drive
(see Figure 2):

Fig. 2. Car-like model.



ẇ = vcosθ
ẏ = vsinθ
θ̇ = ω,

where (w,y) represents the position of the center of the real
wheel axle and θ the orientation angle. The control input is
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