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We introduce a new formulation of the minimum time problem in which we employ the 
signed minimum time function positive outside of the target, negative in its interior and 
zero on its boundary. Under some standard assumptions, we prove the so called Bridge 
Dynamic Programming Principle (BDPP) which is a relation between the value functions 
defined on the complement of the target and in its interior. Then owing to BDPP, we obtain 
the error estimates of a semi-Lagrangian discretization of the resulting Hamilton–Jacobi–
Bellman equation. In the end, we provide numerical tests and error comparisons which 
show that the new approach can lead to significantly reduced numerical errors.

© 2017 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The global solution of the minimum time problem can be efficiently obtained via the solution of the associated 
Hamilton–Jacobi–Bellman equation. Indeed, the unique viscosity solution of this equation is the optimal value function 
of the problem, whose knowledge can in a subsequent step be used in order to synthesize the optimal control functions. 
For the numerical solution of this Hamilton–Jacobi–Bellman equation, semi-Lagrangian schemes — which consist of a semi-
discretization in time followed by a finite element discretization in space — are particularly attractive because they are 
unconditionally stable and allow to combine different discretization methods in space and time [7]. Most importantly, how-
ever, the semi-discretization is directly linked to a discrete time approximation to the original minimum time problem, 
which facilitates both the interpretation of the numerical results and the synthesis of approximately optimal feedback laws 
from the numerical approximation.

In the case of the minimum time problem, the semi-Lagrangian approach was first presented and analyzed in [2,3], 
recent developments include the analysis of high-order discretization schemes in time in [4]. One of the main disadvan-
tages of the semi-Lagrangian approach is the fact that the semi-discretization of the standard minimum time problem leads 
to a piecewise constant optimal value function whose discontinuities pose problems, e.g., for the subsequent spatial dis-
cretization. The discontinuities stem from the fact that the optimal value function is fixed to v ≡ 0 on the target set of the 
minimum time problem. In order to improve the approximation, it does hence appear to be a good idea to use a formulation 
of the minimum time problem which avoids setting v to 0. To this aim, we extend the original problem by introducing an 
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additional problem defined in the interior of the target. While this requires somewhat more regularity of the target bound-
ary and the vector field, we demonstrate in this paper that it also yields a significant improvement in accuracy. We present 
the theoretical foundations of this new formulation of the minimum time problem as well as its numerical discretization in-
cluding an error analysis of the resulting semi-Lagrangian scheme. Numerical examples show that under suitable conditions 
the new formulation is indeed able to significantly reduce the numerical error compared to the classical approach.

The remainder of the paper is organized as follows. Section 2 introduces the new formulation of the minimum time 
problem from a theoretical point of view and proves the bridge dynamic programming principle (BDPP) as the main tech-
nical tool for the subsequent analysis. In Section 3 the discretization is introduced and the numerical error is analyzed. The 
performance of the new approach is finally illustrated by several numerical examples in Section 4.

2. A new formulation of the minimum time problem

To begin with, we recall basic notations and definitions necessary for this work. Let S ⊂ R
n be a closed set and σ > 0

be a given constant. For x ∈ R
n , we define

dS(x) = min{‖y − x‖ : y ∈ S},
Sσ = {x ∈R

n : dS(x) ≤ σ },
S−σ = {x ∈R

n : dSc (x) ≥ σ },
where Sc is the complement of S , Sc = R

n \ S , and S̄ is the closure of S . For readers’ convenience, we also recall the 
definition of a set satisfying an internal (external) sphere condition as follows.

Definition 2.1. Let S ∈R
n be closed and ρ > 0 be given.

(1) S satisfies a ρ-internal sphere condition if S is the union of closed spheres of radius ρ , i.e., for any x ∈ S there exists y
such that x ∈ Bρ(y) ⊂ S .

(2) S satisfies a ρ-external sphere condition if S̄c satisfies a ρ-internal sphere condition.

Consider the control dynamics and its inverse one in Rn{
ẏ+(t) = f (y+(t), u(t))

y(0) = ξ,
(2.1)

{
ẏ−(t) = − f (y−(t), u(t))

y(0) = ξ,
(2.2)

where u(t) ∈ U for a. e. t , U ⊂ R
m a compact set. Under standard assumptions, the existence and uniqueness of (2.1) as well 

as (2.2) are guaranteed for any u(·) measurable and any ξ ∈ R
n . Let S ⊂ R

n , a nonempty compact set, be the target and 
U := {u : [0, +∞) → U , measurable}. We define the minimum time to reach S and to S̄c by following some u(·) ∈ U from 
ξ /∈ S and η /∈ S̄c respectively

tS(ξ, u) = min{t : y+(t, ξ, u) ∈ S} ≤ +∞,

tSc (η, u) = min{t : y−(t, η, u) ∈ S̄c} ≤ +∞.

Then the minimum time functions to reach S and to reach S̄c from ξ and η are defined respectively as

T S(ξ) = inf
u∈U{tS(ξ, u)},

T Sc (η) = inf
u∈U{tSc (η, u)}.

Under standard assumptions, the infimum is attained, provided it is not +∞. We also define

RS = {ξ ∈R
n : T S(ξ) < +∞},

RSc = {η ∈R
n : T Sc (η) < +∞},

the reachable sets w.r.t S and S̄c . We define level sets in a neighborhood of ∂ S by setting, given τ > 0,

S+
τ = {x /∈ S, T S(x) < τ },

S−
τ = {x /∈ S̄c, T Sc (x) < τ }.
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