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a  b  s  t  r  a  c  t

This  paper  presents  a new  approach  for long  term  hydropower  scheduling.  In  opposition  to  the  standard
Markovian  stochastic  dynamic  programming  approach,  where  monthly  inflows  are  modeled  according  to
probability  distribution  functions,  conditioned  to some  occurrence  of  inflow  in  the  previous  month,  in the
proposed  approach  the  monthly  inflows  are aggregated  in different  time  scales  and  then  submitted  to  the
Markovian  model.  The  discharge  decisions  are then  calculated  by  a deterministic  model  that  optimizes
the  problem  for one  year  ahead  according  to inflows  provided  by  a combination  of each  Markovian  model.
Tests  were  conducted  on hypothetical  single-reservoirs  hydrothermal  systems  using data  from  four  real
Brazilian hydro  plants,  with  distinct  hydrological  regimes.  The  performance  of the  proposed  method
was  evaluated  through  simulation,  using  the  historical  inflow  data,  in comparison  with  the  standard
Markovian  model.  The  results  have  shown  that the proposed  approach  has  provided  spillage  reduction
and  increase  on hydro  productivity  as well  as power  generation,  which  incurred  in up to 2.1%  reduction
in  operational  costs.

© 2017  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The idea of controlling reservoir’s storage is connected to the
human development since ancient times [1]. After 1940’s, acceler-
ated by the second war, a large advance on dam management was
published emerging from the theory of sequential decisions [2].

Later on, many contributions were proposed and the
most accepted technique, until nowadays, to solve long term
hydropower scheduling, LTHS, was proposed in 1976. Stochas-
tic dynamic programming, SDP, is a closed-loop control policy
that aims to determine optimal decisions for a range of discrete
states of the system. The main limitation of SDP is the so-called
“curse of dimensionality” as the computational effort increases
exponentially with the number of state variables [3].

As scheduling problems were getting more challenging (power
system growth, diversification of power sources and market issues
involved) and taking advantage of technological advances, several
improvements were developed over the SDP theory.
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In Ref. [4] general uses of dynamic programming, DP, and clas-
sical modeling are presented. Later on, some adaptations to bypass
the “curse of dimensionality” [12] and to solve instability problems
[13–15] were implemented. Different approaches and heuristics
methods, associated with DP [7,10] were also considered for differ-
ent problems. Intelligent systems with neural networks were also
incorporated to DP in Refs. [5,6,8,9,11]. A deep resume of a great
number of DP based techniques for solving reservoirs operation
problems is presented in Ref. [16]. Streamflow prediction models
were also tested in substitution of classical statistical models [17].

Annual inflow prediction has been proposed and tested in a
framework of predictive control modeling [18]. The comparison
between this method and the standard one, Markovian stochastic
dynamic programming, MSDP, has shown expressive improve-
ments, indicating that annual inflow models can provide better
information for optimal monthly decision-making problems. The
reason is that it might be more important to foresee the total
inflow for the next year, which includes the next wet  season, then
to foresee the inflow of the next month [20–24], since optimal
decision-making aims to maximize hydro generation but at the
same time distribute it on time so that thermal generation costs
be as flat as possible within the planning horizon. The extension of
this idea to SDP is possible and has shown promising results [19].
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This paper proposes a new approach to solve LTHS problems
based on a nested composition of MSDP models which results, from
the aggregation of monthly inflows up to one year on different time
scales. Decision-making at each month is then determined as the
optimal decision of the first monthly stage of a deterministic non-
linear optimization model that solves the LTHS one year ahead, in
monthly steps, with inflows provided by the MSDP models. It is
possible to implement the proposed technique in a larger system
with more than one hydropower plant using the equivalent reser-
voir technique [4]. In this paper only single reservoir systems were
considered to clearly identify the differences between the classical
methods and the proposed one.

This paper is structured as follows. Section 2 presents the LTHS
model with a brief explanation of the SDP modeling and main
variables description. The proposed method is also explained and
discussed, along with the motivation and some characteristics of
the hydro data that support the main idea. Section 3 presents the
case studies and results. Finally, Section 4 summarizes the main
contribution and takes some conclusions.

2. Problem formulation

The LTHS for single-reservoir hydropower systems can be for-
mulated as the following stochastic optimization problem:

Objective: ˛1 (x0, y0) = min
q
Ey

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T∑
t = 1

0

 (dt − gt)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1)

Subject: gt = k.ht.qt (2)

ht = �
(
xavgt

)
− � (ut) − � (3)

xavgt = (xt−1 + xt)/2 (4)

ut = qt + st (5)

xt = xt−1 + (yt − ut) .ıt (6)

Xmin ≤ xt ≤ Xmax (7)

qt ≤ Qmax (8)

ut, qt, vt ≥ 0 (9)

where Ey, is the expected value with respect to inflows; t, time stage
index (months); T, number of time stages in planning period;  ,
thermal generation cost ($); d, load demand (MW);  g, hydropower
generation (MW);  k, constant efficiency factor (MW/{m3/s m}); h,
net water head (m); x, reservoir storage (hm3); u, release from
reservoir (m3/s); q, discharge through turbines (m3/s); s, spillage
from reservoir (m3/s); Xmin,max, limits for reservoir storage (hm3);
Qmax, maximum discharge (m3/s); �, forebay elevation function
(m); �, tailrace elevation function (m); �, average penstock head
loss (m); y, inflow into reservoir (m3/s); ı, stage duration (s/106).

The objective function, ˛, (1) aims to minimize over a planning
horizon T, the expected value of  ,  expressed as a quadratic func-
tion, mainly related with the fuel used at the thermal plants. As d is
fixed, these costs, are controlled by g, which is a product of k, h, and
q. The constant k includes the water density, gravity acceleration
and average turbine/generator efficiency. Two different polynomial
functions, up to fourth degree, are used to calculate � and �.

The variables u, q and s are non-negative and defined for every
t. The maximum limit was defined only for q since s is not handled
as a decision variable during optimization. The water balance, or
state transition, Eq. (6) determines xt using the previous (or initial)
reservoir storage, x(t−1), y, (inflow) and u, (outflow). The conversion

constant ı only converts cubic meter per second in cubic hectome-
ter per month. Terms such as evaporation and other water uses
have not been considered for the sake of simplicity.

2.1. Markovian stochastic dynamic programming

MSDP determines rules for decision making at each stage of
the planning period which will provide the optimal decision for
each possible state of the system. Mathematically, the MSDP tech-
nique determines a sequence of decision functions, q*

t(xt−1,yt−1),
mapping the possible states (reservoir storage, past inflow), onto
decisions (discharge) that minimize the expected costs.

The MSDP considered here assumes that the stochastic vari-
able, yt , depends only on the inflow of the previous stage, yt−1.
This means that inflows are represented by a first-order periodic
autoregressive model, PAR-1, what makes it possible to describe
such uncertainty as a Markov chain process.

For each stage, decisions are ranked based on the minimization
of the expected sum of the present cost and the future cost, assum-
ing optimal decision-making for all subsequent stages, according
to Bellman’s Optimality Principle. Therefore the problem can be
solved in a recursive way:

˛t (xt−1, yt−1) = min
q
Ey

{
 (dt − gt) + ˛t+1 (xt, yt)

}
(10)

As we are interested on the control law of the system on stead
state, the backward recursion can be computed, starting from the
last stage where terminal cost is assumed null, and must be per-
formed until the convergence of the monthly decision functions.
This procedure requires, at least, the discretization of the state vari-
able. The control variable can either be discretized or treated as a
continuous variable.

Normal (Gaussian) and Log-normal distribution are the most
widely used probability density functions (PDF) for inflows mod-
eling [25]. Let ym represent the inflow data for every month,
m = [1,2,. . .12], the log-normal conditional density distribution
function of the inflows, estimated from historical records, can
be expressed as in Eq. (11), where �m represents the correlation
between two  consecutive months, �(m|m−1) the conditional mean
(12) and �(m|m−1) the conditional standard deviation (13).

f (ym|ym−1) = 1√
2��2

m|m−1

e
−
(

ŷt−�m|m−1√
2�m|m−1

)2

(11)

�m|m−1 = �m + �m
�m
�m−1

(
ŷt−1 − �m−1

)
(12)

�m|m−1 = �m
√

1 − �2
m (13)

Conditional probability of discrete inflow ranges, yt ∈ (a,b], rep-
resented by their average value, yit , can be calculated as in Eq. (14):

P
(
yit|t−1

)
=

b∫
a

f (yt |yt−1)dy (14)

Finally, the expected cost can be calculated, according to the
conditional probabilities of inflows being in the interval repre-
sented by yit from N possible ranges, as expressed below:

Eyt|t−1

{
 (dt − gt) + ˛t+1 (xt, yt)

}
=

N∑
i

{
 (dt − gt) + ˛t+1

(
xt, yit

)}
P
(
yit|t−1

)
(15)
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