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Kernel Dynamic Policy Programming: Applicable
Reinforcement Learning to Robot Systems with High

Dimensional States

Yunduan Cui∗, Takamitsu Matsubara, Kenji Sugimoto

Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan

Abstract

We propose a new value function approach for model-free reinforcement learning
in Markov decision processes involving high dimensional states that addresses
the issues of brittleness and intractable computational complexity, therefore
rendering the value function approach based reinforcement learning algorithms
applicable to high dimensional systems. Our new algorithm, Kernel Dynamic
Policy Programming (KDPP) smoothly updates the value function in accor-
dance to the Kullback-Leibler divergence between current and updated policies.
Stabilizing the learning in this manner enables the application of the kernel trick
to value function approximation, which greatly reduces computational require-
ments for learning in high dimensional state spaces. The performance of KDPP
against other kernel trick based value function approaches is first investigated
in a simulated n DOF manipulator reaching task, where only KDPP efficiently
learned a viable policy at n = 40. As an application to a real world high di-
mensional robot system, KDPP successfully learned the task of unscrewing a
bottle cap via a Pneumatic Artificial Muscle (PAM) driven robotic hand with
tactile sensors; a system with a state space of 32 dimensions, while given limited
samples and with ordinary computing resources.
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1. Introduction

As one integral part of contemporary machine learning, reinforcement learn-
ing [1] enables agents to search for optimal policies by interacting with their
environments without any prior knowledge and therefore becomes an approach
that expresses a remarkably broad range of robot control problems in a nat-
ural manner [2]. Reinforcement learning is mainly divided into two groups:
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