Annals of Nuclear Energy 102 (2017) 268-273

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

Characteristic analysis and optimum management plan of disused sealed radioactive sources in Korea

FNC Technology Co., 32F, 13 Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do 16954, Republic of Korea

ARTICLE INFO

Article history: Received 24 June 2016 Received in revised form 14 October 2016 Accepted 31 December 2016

Keywords: Disused sealed radioactive sources Radioisotope waste Disposal facility

ABSTRACT

This study reviewed the current status of disused sealed radioactive source (DSRS) in Korea and analyzed its characteristics according to three factors, i.e., IAEA recommended classification system of radioactive waste based on the half-life of radionuclides, potential risk index based on activity divided by the corresponding radionuclide-specific 'D value' and legal classification scheme of radioactive waste based on the concentration of radionuclides. The optimum management procedure was derived based on above three factors above and applied to DSRS which are currently being stored in the centralized temporary storage facility for the radioisotope (RI) waste operated by Korea Radioactive Waste Agency (KORAD). The results of this study would be used as technical background document to draw up an optimum management plan of DSRS in the near future.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Currently, most of disused sealed radioactive sources (DSRSs) generated in Korea are stored in the temporary storage facility of Korea Radioactive Waste Agency (KORAD). On July 2015, seven DSRSs (four boxes of ⁶³Ni nuclide) were transferred to the rock cavern type disposal facility in Gyeongju for the first time. KORAD will receive DSRSs and the annual amount of acceptance is expected to be 33 drums on average. Therefore, the future plan on DSRS disposal should be established as soon as possible in accordance with the construction and operation plan of disposal facility.

Since DSRSs have a great variety of characteristics, the domestic disposal environment and source-specific characteristics should be considered for optimizing the disposal method. In this study, the optimum management plan for the disposal of DSRS has been suggested based on the characteristics of DSRS and relevant regulatory requirements.

2. Characteristic Analysis of disused sealed radioactive sources in Korea

The Notice No. 2014-3 of Nuclear Safety and Security Commission (NSSC) categorizes the radioactive waste into five groups; high-level radioactive waste (HLW), intermediate-level radioactive waste (ILW), low-level radioactive waste (LLW), very low-level

* Corresponding author. *E-mail address:* gracemi@fnctech.com (J. Kim). radioactive waste (VLLW) and exempt waste (EW) (NSSC, 2014a). Radionuclide-specific clearance level of EW for self-disposal and concentration limit of LLW are shown in Tables 1 and 2, respectively. If the concentration of waste is between clearance level in Table 1 and centuple of clearance level, the radioactive waste is classified as VLLW. Also, if the concentration is between one hundred times of clearance level and concentration limit in Table 2, the radioactive waste is classified as LLW. Fig. 1 shows the classification system of radioactive waste in accordance with the Korean regulation.

From 1991 to 2014, 34 radionuclides of DSRS have been generated in various area including industry, hospital, research and education organization. They are as follows:

- 23 radionuclides whose half-lives are lower than 30 years; ²¹⁰Bi, ¹²⁵I, ¹²⁴Sb/Be, ¹⁹²Ir, ⁷⁵Se, ²¹⁰Po, ¹⁵³Gd, ⁶⁸Ge, ⁵⁷Co, ¹⁰⁹Cd, ¹³⁴Cs, ²²Na, ¹⁴⁷Pm, ²⁵²Cf, ⁵⁵Fe, ⁶⁰Co, ¹³³Ba, ⁸⁵Kr, ³H, ¹⁵²Eu, ²⁴⁴Cm, ⁹⁰Sr, ⁹⁰Sr, ⁹⁰Y.
- 9 radionuclides whose half-lives are higher than 30 years; ¹³⁷Cs, ⁶³Ni, ²⁴¹Am, ²⁴¹Am/Be, ²²⁶Ra, ²²⁶Ra/Be, ¹⁴C, ²³⁵U, ²³⁸U.
- 2 mixed sources including ⁶⁰Co and ⁹⁰Sr, respectively.

Among these DSRSs, 7 radionuclides are alpha sources including ²¹⁰Po, ²⁵²Cf, ²⁴⁴Cm, ²⁴¹Am, ²²⁶Ra, ²³⁵U, ²³⁸U and remaining radionuclides are beta sources. The radionuclides containing Beryllium such as Sb/Be, Am/Be and Ra/Be are neutron sources. Although most of DSRSs are solid form, some DSRS such as ⁸⁵Kr and ³H exist as gaseous form in the sealed container with unbreakable and

Table	1
-------	---

Radionuclide-specific clearance level of exempt waste (NSSC, 2014a).

Radionuclide	Clearance Level (Bq/g)
I-129	0.01
Na-22, Sc-46, Mn-54, Co-56, Co-60, Zn-65, Nb-94, Ru-106, Ag-110m, Sb-125, Cs-134, Cs-137, Eu-152, Eu-154, Ta-182, Bi-207, Th-229, U-232, Pu-	0.1
238, Pu-239, Pu-240, Pu-242, Pu-244, Am-241, Am-242m, Am-243, Cm-245, Cm-246, Cm-247, Cm-248, Cf-249, Cf-251, Es-254	
C-14, Na-24, Cl-36, Sc-48, V-48, Mn-52, Fe-59, Co-57, Co-58, Se-75, Br-82, Sr-85, Sr-90, Zr-95, Nb-95, Tc-96, Tc-99, Ru-103, Ag-105, Cd-109, sn-	1
113, Sb-124, Te-123m, Te-132, Cs-136, Ba-140, La-140, Ce-139, Eu-155, Tb-160, Hf-181, Os-185, Ir-190, Ir-192, Tl-204, Bi-206, U-233, Np-237,	
Pu-236, Cm-243, Cm-244, Cf-248, Cf-250, Cf-252, Cf-254	
Be-7, F-18, Cl-38, K-43, Ca-47, Mn-51, Mn-52m, Mn-56, Fe-52, Co-55, Co-62m, Ni-65, Zn-69m, Ga-72, As-74, As-76, Sr-91, Sr-92, Zr-93, Zr-97, Nb-	10
93m, Nb-97, Nb-98, Mo-90, Mo-93, Mo-99, Mo-101, Tc-97, Ru-97, Ru-105, Cd-115, In-111, In-114m, sn-125, Sb-122, Te-127m, Te-129m, Te-	
131m, Te-133, Te-133m, Te-134, I-126, I-130, I-131, I-132, I-133, I-134, I-135, Cs-129, Cs-132, Cs-138, Ba-131, Ce-143, Ce-144, Gd-153, W-181,	
W-187, Pt-191, Au-198, Hg-203, Tl-200, Tl-202, Pb-203, Po-203, Po-205, Po-207, Ra-225, Pa-230, Pa-233, U-230b, U-236, Np-240, u-241, Cm-	
242, Es-254m	
H-3, S-35, K-42, Ca-45, Sc-47, Cr-51, Mn-53, Co-61, Ni-59, Ni-63, Cu-64, Rb-86, Sr-85m, Sr-87m, Y-91, Y-91m, Y-92, Y-93, Tc-97m, Tc-99m, Rh-	100
105, Pd-109, Ag-111, Cd-115m, In-113m, In-115m, Te-129, Te-131, I-123, I-125, Cs-135, Ce-141, Pr-142, Nd-147, Nd-149, Sm-153, Eu-152m,	
Gd-159, Dy-166, Ho-166, Er-171, Tm-170, Yb-175, Lu-177, re-188, Os-191, Os-193, Ir-194, Pt-197m, Au-199, Hg-197, Hg-197m, Tl-201, Ra-227,	
U-231, U-237, U-239, U-240, Np-239, Pu-234, Pu-235, Pu-237, Bk-249, Cf-253, Es-253, Fm-255	
Si-31, P-32, P-33, Fe-55, Co-60m, Zn-69, As-73, As-77, Sr-89, Y-90, Tc-96m, Pd-103, Te-125m, Te-127, Cs-131, Cs-134m, Pr-143, Pm-147, Pm-149,	1000
Sm-151, Dy-165, Er-169, Tm-171, W-185, re-186, Os-191m, Pt-193m, Pt-197, At-211, Th-226, Pu-243, Am-242, Cf-246	
Co-58m, Ge-71, Rh-103m, Fm-254	10,000

Table 2

Radioactivity Concentration limit for low-level waste (NSSC, 2014a).

Radionuclide	Radioactivity concentration (Bq/g)
H-3, Cs-137	$1.11 imes 10^6$
C-14	$2.22 imes 10^5$
Co-60	$3.70 imes 10^7$
Ni-59, Sr-90	$7.40 imes10^4$
Ni-63	$1.11 imes 10^7$
Nb-94	$1.11 imes 10^2$
Tc-99	$1.11 imes 10^3$
I-129	$3.70 imes 10^1$
Gross-alpha	$3.70 imes 10^3$

non-corrosive material. The majority of DSRSs have been generated from industrial organizations, and it took about 87.5% in volume.

The next is medical institute followed by public, research, educational and military institution in order.

As shown in Fig. 2, the total number of DSRSs was 52,176 over the past 24 years. ¹⁹²Ir took about 69.7% and its number was 36,382. ³H took about 10.5%, followed by ¹⁴⁷Pm (3.9%), ²⁴¹Am (3.7%), ⁶⁰Co (3.3%), ¹³⁷Cs (2.5%), ¹⁴⁷Pm (1.7%), ⁸⁵Kr (1.0%), ²²⁶Ra (0.9%), ⁹⁰Sr (0.7%). In terms of radioactivity, total radioactivity was estimated as 1.514×10^9 Bq as of 2014. ¹³⁷Cs took the highest portion of radioactivity, which was about 59.3% of total activity. ⁶⁰Co took 37.5% of total activity followed by ²⁴¹Am (2.0%), ⁸⁵Kr (0.6%), ²⁴¹Am/Be (0.2%), ²²⁶Ra (0.1%), ⁶³Ni (0.09%), ⁹⁰Sr (0.04%), ¹⁴⁷Pm (0.04%), ²⁴⁴Cm (0.02%). The total volume of DSRS including the storage container was 6.43×10^4 L, and ⁶⁰Co took 55.1% followed by ¹³⁷Cs (16.8%), ¹⁹²Ir (9.8%), ⁵⁷Co (4.9%), ²⁴¹Am/Be (3.6%), ⁸⁵Kr (2.1%), ²²⁶Ra (1.6%), ⁶³Ni (1.5%), ²⁴¹Am (1.4%), and ¹⁴⁷Pm (0.8%). In summary, ⁶⁰Co, ¹³⁷Cs, ¹⁹²Ir, ²⁴¹Am and ²⁴¹Am/Be took

Fig. 1. Classification system of radioactive waste in Korea.

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران