An Adaptable Model for the Factory Planning Process: Analyzing Data Based Interdependencies

Sven Hawer*, Benedikt Sagera, Hanna Braunb, Gunther Reinhartb

aInstitute for Machine Tools and Industrial Management, Technical University of Munich, Germany

* Corresponding author. Tel.: +49-89-289-15559; fax: +49-89-289-15555. E-mail address: sven.hawer@iwb.tum.de

Abstract

Various models of the factory planning process have been developed in the past decades. For these process models, we conducted a literature review with focus on dealing with unexpected changes in planning premises due to the turbulent corporate environment. The results were compared with the best-practice approach, which we identified in numerous interviews with industry experts. It can be concluded that a process model which takes into account data based interdependencies and at the same time allows adaptation to individual planning cases, is lacking. With the aim of defining a reference process for factory planning, we adopted the modular approach of Condition Based Factory Planning in which the planning data is regarded as input and output of each planning task. In order to minimize planning effort, a tool named aranea to individually adapt this reference process is introduced. Within this tool we implemented an algorithm to automatically convert the interdependencies between the planning tasks into a Design Structure Matrix. This step enables the factory planner to apply methods from structural complexity management to identify planning data for which fuzziness is especially critical and which could lead to delays and iterations in further planning tasks.

1. Introduction

In a turbulent environment caused by increasing market dynamics, product individualization, shorter product lifecycles and higher innovation frequency [1], companies strive for flexible and changeable manufacturing systems [2]. Whereas changeability of the manufacturing system is in the focus of current research [3], the factory planning process has not been developed further with regard to changeability in the same intensity. Even though methods for agile project management are established in software development, they are not yet common in manufacturing systems planning [4]. The many different existing process models for factory planning present a rather unstandardized, heterogeneous amount of approaches with different terminology [5] which need to be compared and consolidated.

A reference process for factory planning which is adaptable to individual companies’ planning procedures without great effort and at the same time takes planning data into account does not exist so far. Especially a changeable model considering the existing interdependencies between different planning phases resulting from their in- and output data has not been developed yet. However, these interdependencies are vital for designing an efficient planning process and assess the effects of fuzzy planning parameters caused by the turbulent market environment.

In this paper, we first review the state of the art for classical phase oriented factory planning models. We then pay special attention to continuous and modular process models as the more recent approaches and give an introduction to structural complexity management (chapter 2). In order to analyze how practitioners conduct factory planning, the results of 18 expert
interviews are summarized in the description of planning tasks which form the basis for a modular and data oriented reference model. We introduce the software tool *aranee* as a support for the planner to design individual process models (chapter 3). Based on the proposed reference process, methods from structural complexity management are applied to analyze which planning parameters have the greatest influence on the feasibility of tasks located later in the planning process (chapter 4). The paper is completed with a conclusion and outlook (chapter 5).

2. State of the Art

2.1. Classical Phase-oriented Factory Planning Process

The classical approaches for the factory planning process have several aspects in common. The first principle comprises starting with broad and rough steps (e.g. in a block-layout) and then continuously detailing and refining the results (e.g. workplace design, ergonomics). The second principle is that the first steps are rather abstract (e.g. a Sankey diagram) and the more a factory planning project advances, the more concrete are its results (e.g. the detailed facility layout). The third principle leads from an aggregated state (strategic level) in the early steps to focusing single separated aspects (tactical level) [6].

The process models developed by [7] and the Association of German Engineers (VDI 5200, [8]) consist of 5 respectively 7 steps. These steps are ordered in a sequence, meaning the tos (ing steps cannot be started as long as the current step is not finished. A similar approach is the process model by [9] which distinguishes 10 partly overlapping planning phases. The process by [5] also follows this phase-based approach.

The authors of Phase-oriented Factory Planning Process start with broad and rough steps (e.g. in a block-layout) and then continuously detailing and refining the results (e.g. workplace design, ergonomics). The second principle is that the first steps are rather abstract (e.g. a Sankey diagram) and the more a planning project progresses, the more concrete are its results (e.g. the detailed facility layout). The third principle leads from an aggregated state (strategic level) in the early steps to focusing single separated aspects (tactical level) [6].

The process models developed by [7] and the Association of German Engineers (VDI 5200, [8]) consist of 5 respectively 7 steps. These steps are ordered in a sequence, meaning the tos (ing steps cannot be started as long as the current step is not finished. A similar approach is the process model by [9] which distinguishes 10 partly overlapping planning phases. The process by [5] also follows this phase-based approach.

The first authors to consider iterations are [10]. They developed a factory planning process based on steps which are arranged in consecutive, overlapping phases. Each step provides a back-ward-link to the preceding step making iterations possible and thus enabling the planner to repeat certain activities in case of inconclusive or low-quality results.

[11] was the first to integrate iterations which cover more than one step. If the developed concepts of the production system are not approved by management, for example, the planner restarts the process several steps earlier.

The model developed by [12] integrates generic planning phases and specific tasks, enabling the planner to derive interactions between different tasks and visualizing the control loop. The factory planning department which serves as control unit.

The control loop is closed by the factory planning department which serves as control unit.

This iterative concept for factory planning is adopted by [21], in this section, we therefore focus on the most relevant continuous and especially on modular approaches for factory planning.

[22] introduces an approach which uses the concept of control loops to design a model for planning transformable and modular factory structures. The factory is modelled as control route and production controlling is engaged as measuring unit. A transformability monitor which receives impulses from the turbulent environment and executive management works as regulator sending control variables to the factory planning department which serves as control unit. The control loop is closed by the factory planning sending control variables (i.e. changes in the factory structure) back to the control route, the factory.

This iterative concept for factory planning is adopted by [23] in a way which separately considers flexibility and reconfigurability as measures of the changeability level.

[24] also provides an iterative concept for factory planning. In addition to the authors mentioned above, his approach focuses the idea of continuous improvement of the factory but stays on a more generic level.

An early modular approach for factory planning is developed by [25] to create a continuous and cost-oriented planning methodology. The modules contain planning tasks like defining the material flow, dimensioning of the system or layout planning. These tasks that, if accumulated, form the whole factory planning process, are supported by the modules.
دریافت فوری
متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات