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H I G H L I G H T S

• Endogenous technology learning can be integrated into MILP power system models.

• Efficient modelling reduces solution time by 95% with an average error of −1.7% to 2.5%.

• Disregarding technology learning distorts optimal capacity expansion planning.

• Early technology investments can reduce plant-level and total system costs.

• System design and cost results depend strongly on maximum new capacity build rate.
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A B S T R A C T

We present an power systems optimisation model for national-scale power supply capacity expansion con-
sidering endogenous technology cost reduction (ESO-XEL). The mixed-integer linear program minimises total
system cost while complying with operational constraints, carbon emission targets, and ancillary service re-
quirements. A data clustering technique and the relaxation of integer scheduling constraints is evaluated and
applied to decrease the model solution time. Two cost learning curves for the different power technologies are
derived: one assuming local learning effects, the other accounting for global knowledge spill-over. A piece-wise
linear formulation allows the integration of the exponential learning curves into the ESO-XEL model. The model
is applied to the UK power system in the time frame of 2015 to 2050. The consideration of cost learning effects
moves optimal investment timings to earlier planning years and influences the competitiveness of technologies.
In addition, the maximum capacity build rate parameter influences the share of power generation significantly;
the possibility of rapid capacity build-up is more important for total system cost reduction by 2050 than ac-
counting for technology cost reduction.

1. Introduction

Climate change mitigation and adaptation strategies are influencing the
debate in national and international politics, economies, and science. As a
consequence, there is a marked increase in the number and diversity of
climate and energy models developed for the analysis of future pathways.
Despite inherent uncertainty in input parameters and unforeseeable events
outside the typical modelling scope, such analyses have the value of being
able to assess general feasibility, profitability, and effectiveness of relevant
“real-world” actions. In the context of the electricity sector, assessing the
implications of power technology improvement is crucial to assist a rea-
soned decision-making, especially when considering long time scales.

The observation of a reduction in technology cost with increased ex-
perience was first reported by Wright in 1936 for the case of aeroplane
manufacturing [1]. Solow and Arrow later extended and formalised this
observed trend as “learning by doing” [2,3]. In the 1970s and 80s, Zim-
merman, Joskow, Lieberman and others began studying learning effects
on the cost of power plants and chemical processes [4–6].

Today the concept of technology cost reductions is embodied mathe-
matically in the form of learning curves or experience curves, which are
often used to project future technology cost trends [7–10]. Incorporating
the correlation between technology deployment and cost into energy
system models is an attempt to build a framework capable of evaluating
whole-system effects caused by and inducing technology cost reduction.
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The aim and contribution of this paper is to address the following
questions: How can endogenous technology learning be integrated ef-
fectively in power system models? What is the impact on optimal ca-
pacity expansion and total system cost when considering technology

learning effects? The paper is structured as follows:

Section 2: A brief discussion on technology cost reduction and an
introduction to the concept of cost learning curves; a review of en-
ergy and power system models including technology cost learning
effects.
Section 3: The development of a mixed-integer linear program
(MILP) for cost-optimal capacity expansion of an power system
considering endogenous technology learning curves as piecewise

Nomenclature

Sets

a planning periods, ∈ = …a A A{1, , }end [yrs]
t time periods, ∈ = …t T T{1, , }end [h]
c clusters of representative days of each year,

∈ = …c C C{1, , }end [–]
i technologies, ∈ = …i I I{1, , }end [–]
ig power generating technologies, ⊆ig I [–]
ic conventional generating technologies, ⊆ic I [–]
ir intermittent renewable technologies, ⊆ir I [–]
is storage technologies, ⊆is I [–]
il technologies with endogenous learning, ⊆il I [–]
l line segments for piecewise linear function [–]

Parameters

Δa step width planning years [yrs]
DInii number of available units of technology i for =a 1 [–]
DMaxi maximum number of available units of technology i for

=a 1 [–]
Desi nominal capacity per unit of technology i [MW/unit]
BRi build rate of technology i [unit/yr]
LTInii lifetime of initial capacity of technology i for =a 1 [yrs]
LTi lifetime of technology i [yrs]
TL losses in transmission network [%]

∗TEi, features of technology i, where ∗ is: [various]
Pmin minimum power output [%-MW]
Pmax maximum power output [%-MW]
Cmax maximum capacity provision [%-MW]
RP reserve potential, ability factor to provide reserve capacity
∈ ={0,1} [%-MW]
IP inertia potential, ability factor to provide inertial services
∈ ={0,1} [%-MW]
Ems emission rate. [tCO2/MWh]

investment costs of technology i1 [£/unit]
OPEXi a, operational costs of technology i in year a2 [£/MWh]
OPEXSUi start-up costs of technology i [£/MWh]
OPEXNLi fixed operational costs of technology i when operating in

any mode [£/h]
ImpElecPrc t, electricity import price [£/MWh]
UTig minimum up-time for technology ig [h]
DTig minimum down-time for technology ig [h]
SEtais storage round-trip efficiency [%]
SDuris maximum storage duration [h]
SOCMinis minimum storage inventory level [%-MW]
SOCMaxis maximum storage inventory level [%-MW]
AVir c t, , availability factor of technology ir in cluster c at hour t

[%-MW]
SDc t a, , system electricity demand in year a in cluster c at hour t

[MWh]
UD maximum level of unmet electricity demand in any year a

[MWh]
PLa peak load over time horizon T in each year a [MW]

CM capacity margin [%-MW]
RM absolute reserve margin [%-MW]
WR dynamic reserve for wind power generation [%-MW]
SI minimum system inertia demand [MW s]
SEa system emission target in year a [tCO2]
VoLL Value of Lost Load [£/MWh]
Disca discount factor + r(1 )a in year a [–]
WFc weighting factor for clusters c -
Xloil l, lower segment x-value of cumulative capacity of piecewise

linear cost function [MW]
Xupil l, upper segment x-value [MW]
Yloil l, lower segment y-value of cumulative CAPEX [MW]
Yupil l, upper segment y-value [MW]

Variables

tsc total system cost [£]
eig a c t, , , emission caused by technology ig in year a at hour t of

cluster c [tCO2/MWh]
uig a c t, , , number of units of technology ig starting up in year a at

time t of cluster c [–]
wig a c t, , , number of units of technology ig turning down in year a at

time t of cluster c [–]

Positive variables

pig a c t, , , energy output of technology i in year a in hour t of cluster
c [MWh]

p d2 ig a c t, , , energy to demand [MWh]
p s2 ig a c t, , , energy to grid-level storage [MWh]
p is2 is a c t, , , energy to storage technology is [MWh]
rig a c t, , , reserve capacity provided by technology ig [MW]
sis a c t, , , effective state of charge of technology is at the end of time

period t [MWh]
s d2 is a c t, , , energy from storage to demand [MWh]
s r2 is a c t, , , reserve capacity provided by technology is [MW]
slaka c t, , slack variable for lost load [MWh]
xsil a l, , position for technology i in year a on line segment l [MW]
yil a, cumulative CAPEX for technology i in year a [£]

Integer variables

bi a, number of new built units of technology i in year a [–]
di, number of units of technology i operational in year a,

cumulative [–]
nig a c t, , , number of units of technology ig operating in year a at

hour t of cluster c [–]
ois a c t, , , number of units of storage technology is operating in year

a at hour t of cluster c [–]

Binary variables

ρil a l, , 1, if cumulative CAPEX of technology il in year a on line
segment l [–]

1 Including interest during construction (IDC) with a discount rate of 7.5% over the
respective construction time period per technology type.

2 Including fuel cost, carbon tax, CO2 transport and storage cost, fixed O &M cost per
technology type.
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