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a b s t r a c t 

Reward and punishment are crucial for the emergence and sustainability of cooperation in evolutionary 

games. In this work, we introduce a third-party agent, who plays the role of a judge to reward coopera- 

tors and punish defectors, to study the impact of reward and punishment on the evolution of cooperation. 

The introduced righteous agent is different from the cooperators and defectors in the traditional games 

and it exists as a judge independent of the processes of the games. In each round of the evolutionary 

game, each player has a half chance to confront the righteous agent. If the player is a cooperator, it’s 

possible for it to obtain an extra profit. On the contrary, when a defector meets the righteous agent, its 

earnings may be reduced. The simulation results show that the introduction of the righteous agent in the 

evolutionary game favors the evolution of cooperation. The robustness of the promoting effect is tested 

for different complex topologies for the prisoner’s dilemma game. The enhancement effects are confirmed 

in the snowdrift game as well, which may imply that the facilitation effects show a high degree of univer- 

sality independent of the structure of the applied spatial networks and the potential evolutionary game 

models. Our conclusion may be conducive to interpret the emergence and sustainability of cooperation 

within the structured populations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The emergence and maintenance of cooperation among unre- 

lated individuals is a ubiquitous phenomenon in both biological 

and social systems [1–5] , which is inconsistent with the descrip- 

tion in Darwin’s The Origin of Species . For elucidating this puz- 

zle, the evolutionary game theory is adopted as a common formal 

framework to study the evolution of cooperation in social dilem- 

mas, in which social contradictions are analogous to the competi- 

tion among peers for limited resources [6–9] . 

A variety of game models including the prisoner’s dilemma 

game (PDG) and the snowdrift game (SDG) are proposed to investi- 

gate the evolution of cooperation [10–15] . In the traditional games, 

two involved players are asked to make a choice (cooperate or de- 

fect) simultaneously. If they both choose to cooperate, they will 

obtain the highest collective payoff and receive a reward R , respec- 

tively. On the other hand, mutual defection yields the lowest col- 

lective payoff and each of the two encountering defectors obtains 

a punishment P . If an agent chooses to defect while the opponent 

cooperates, the defector receives a temptation to defect T , and the 
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cooperator obtains a sucker’s payoff S . For the PDG, the ranking of 

these four payoffs is T > R > P > S , which implies that the best 

strategy for each agent is to defect regardless of the opponent’s 

decision. The payoff ranking is inconsistent with the fact that co- 

operative behaviors are widely observed in nature [16–18] . In fact, 

the largest individual interests do not bring the greatest collective 

interests, which is precisely the so-called social dilemma. For the 

SDG, players interact in a similar way, but the payoff ranking is 

T > R > S > P . This minor variation induces a significant change 

in the game dynamics with the creation of a second Nash equilib- 

rium where the optimal strategy for the player is the opposite of 

the opponent’s (defect when your opponent cooperates and coop- 

erate when your opponent defects) [10,11,19,20] . 

In the past few years, a large number of scenarios have been 

proposed to understand the origin and evolution of cooperation 

[3,21–23] . Examples include asymmetry of learning and teach- 

ing activities [24–26] , personal reputation [27,28] , different up- 

date rules [3,29,30] , reward and punishment [31–35] . These mech- 

anisms have been attributed to five aspects by Nowark: kin se- 

lection, direction reciprocity, indirect reciprocity, group selection 

and network reciprocity [36] . Among these mechanisms, network 

reciprocity, where agents are arranged on the spatially structured 

topology and play only with their direct neighbors, is a well- 
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known dynamical rule that favors the evolution of cooperation 

[37–40] . Because cooperators can form compact clusters which 

minimizes the aggression by defectors and protects the agents that 

are situated in the interior of such clusters. The evolution of co- 

operation on networks has been extensively explored in a large 

number of network structures since Nowak and May proposed the 

first model of the networking PDG, where the agents were popu- 

lated on the square lattices [41] . Meanwhile, even in the same net- 

work topology structure, numerous evolutionary mechanisms are 

proposed to understand the prevalence of cooperation, such as the 

mechanism mentioned above [42–44] . 

Of particular renown, the impact of the reward and punishment 

on the evolution of cooperation has received great attention till 

now. In vast majority of existing works, most of the authors fo- 

cus their attentions either on the role of reward or on the role of 

punishment [32,33,45–47] . Besides, in most these papers, cooper- 

ators (defectors) receive rewards (punishments) as a second-stage 

behavior and the game models are almost limited to public goods 

game [31,48–55] . There is a situation of particular relevance that 

has received relatively little attention. This is the case of combi- 

nation of the reward and punishment in one mechanism. In the 

present paper, we consider a special righteous agent who will play 

the role of a reward agent and punisher simultaneously in the PDG 

on the square lattice. Each player in the game has a half chance 

to confront the ‘righteous guy’. If the player is a cooperator, it 

will obtain an additional bonus; on the contrary, a defector will 

be fined. Different classes of networks including Erdös–Rényi (ER) 

graph and Barabási–Albert (BA) scale-free (SF) network are consid- 

ered in the spatial PDG as well. The robustness of the simulation 

results are tested in the SDG on the square lattice. The simulation 

results show that the introduction of the righteous agent can im- 

prove the evolution of cooperation dramatically. 

2. Method 

We consider an evolutionary two-strategy PDG with agents 

populated on the vertices of the discussed networks. Following a 

common parametrization, the payoffs in the PDG are set as fol- 

lows: T = b > 1, R = 1 and P = S= 0 satisfying the ranking T > R 

> P ≥ S , which captures the essential social dilemma between in- 

dividual and common interests. It is worth noting that even if we 

choose a weak and simple version (namely, S = P = 0), the simu- 

lation results are robust and can be observed in the full parame- 

terized space. For the SDG, a similar mechanism with T = 1+ r, R = 1, 

S = 1- r and P = 0 is adopted, where 0 < r ≤ 1 represents the so-called 

cost-to-benefit ration for satisfying the payoff ranking T > R > S > 

P . 

In this work, we introduce a third-party agent in the 2-person 

evolutionary games (PDG and SDG), in which the introduced agent 

plays the role of a judge. In the model, the agents (the cooperators 

and the defectors) in the traditional evolutionary game have a half 

chance to confront the third-party agent. If a cooperator encoun- 

ters the third-party agent, it will obtain an additional benefit γ for 

its selfless behavior. Meanwhile, if a defector meets the third-part 

agent, it will be punished for its selfishness and its payoff will be 

reduced by γ . The value of γ is changed from 0.0 to 0.5. When 

γ = 0, the model is reduced to the standard spatial PDG or SDG 

and no additional reward or punishment is applied to the players. 

The robustness of the results is tested by considering three differ- 

ent classes of networks including regular square lattices with pe- 

riodic boundary conditions, Erdös–Rényi random graphs (ER) and 

Barabási–Albert scale-free (SF) networks. 

We implement the evolutionary dynamics in the following el- 

ementary steps. In the initial stage, both the cooperators (C) and 

the defectors (D) have the same probability to occupy the vertices 

of the network topology structure. Then, each player i in the net- 

Fig. 1. The fraction of cooperators ( ρ) in dependence on b (prisoner’s dilemma 

game) and r (snowdrift game) for different values of γ . Compared with traditional 

version (namely, γ = 0), it is obvious that the introduced mechanism promotes co- 

operation. All the results are obtained in the von Neumann neighborhood on the 

square lattice for L = 100, MCS = 60,000 and k = 4. 

work plays with all its neighbors at each time step, and gets a 

payoff P i by adding all the obtained payoffs. Next, all the agents 

synchronously update their strategies employing the finite popu- 

lations analogue of replicator dynamics. The focal player i updates 

its strategy by picking up one of its neighbors at random, say j , 

and comparing the respective payoffs P i and P j . If P i > P j , agent i 

will keep its strategy for the next step. On the contrary, if P i < P j , 

player i will copy the neighbor’s strategy with a probability pro- 

portional to the payoff difference: 

W i ← − j = 

P j − P i 

max { k i , k j } d , (1) 

where k i and k j represent the degrees of players i and j , respec- 

tively, and d stands for the maximum possible payoff difference 

between two agents ( d = b for the PDG and d = 1 + r for the SDG). 

From the equation, it is not difficult to predict that it is possible for 

each player to shift from one strategy to another. 

The key quantity the fraction of cooperators ρ is determined by 

averaging the last 10 4 full MCS (Monte Carlo Simulation) over the 

total 6 × 10 5 steps. All the results are averaged over 40 indepen- 

dent rounds. In addition, the size N and the average degree < k > 

of all the considered networks are set as N = 10 4 nodes and < k > 

= 4, respectively. 

3. Results and analysis 

We firstly depict the fraction of cooperation ( ρ) on a square 

lattice with periodic boundary conditions at the stationary state 

in Fig. 1 . Panel (a) and panel (b) represent the results in the PDG 

and the SDG, respectively. Each agent plays the game with its four 

nearest neighbors (von Neumann neighborhood) and a reward or 

a fine γ may be imposed on the agent according to its strategy. If 

the focal player chooses cooperation strategy, it may acquire an ex- 
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