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a b s t r a c t

Performance potential is an important concept in the sensitivity analysis ofMarkov chains. The estimation
of performance potential provides the basis for the simulation-based optimization and sensitivity analysis
of Markov chains. In this study, we present novel estimation approaches for the average reward (or cost)
performance potential by combining perturbation realization factors and coupling techniques for Markov
chains with finite state space. These approaches can effectively implement estimation with geometric
variance reduction for average reward performance potential. Meanwhile, a number of couplingmethods,
including two optimal coupling methods, can be applied to further reduce estimation variance or
simulation time. The numerical tests show that our approaches can significantly enhance the simulation
efficiency.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Performance potential (Cao, 2007) is referred to by different
terms in various fields. For the average reward (cost) case, per-
formance potential is also called ‘‘bias’’ (Puterman, 1994), ‘‘rela-
tive cost function’’ (Bertsekas, 1995), or ‘‘value function’’ (Munos,
2006). Performance potential plays an important role in solving
the Markov decision process (Cao, 2007; Jia, 2011; Li & Wu, 2016;
Xia & Jia, 2015). The estimation of performance potential provides
the basis for the simulation-based optimization (Chang, Fu, Hu,
& Marcus, 2007; Cooper, Henderson, & Lewis, 2003; Marbach &
Tsitsiklis, 2001) and sensitivity analysis of Markov chains (Cao,
2007). Monte Carlo simulation is a powerful tool for estimating
performance potential (Cooper et al., 2003). Regular Monte Carlo
estimation can provide variance reduction with order O(1/N),
where N is the number of sample paths of a Markov chain. In
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general, variance reduction simulation techniques include im-
portance sampling, correlated sampling, control variate, stratified
sampling and so on Hammerley and Handscomb (1964). Estima-
tions with less variance can be obtained by combining the afore-
mentioned techniques. Estimations with geometric variance re-
duction (EGVR), the variances of which have a geometric reduction
rate, have been investigated by processing the aforementioned
methods iteratively (Halton, 1994; Kollman, Baggerly, Cox, & Pi-
card, 1999) and have been applied to continuous-time Markov
processes (Gobet & Maire, 2006), discrete-time Markov processes,
and gradient estimation (Munos, 2006). As described in Munos
(2006), the EGVRof average rewardperformancepotential is subtle
and deserves intensive treatment. An estimation approach with
geometric variance reduction was proposed in Munos (2006) for
average reward performance potential. However, additional vari-
ables, such as average reward (also called average expected gain
in Munos (2006)) and steady state probability distribution, should
be estimated and the sample path functional should be truncated
artificially. These problems eliminate the benefit of EGVR and
make reducing variance with a geometric rate difficult. A novel
generalized fundamental matrix was proposed in Xia and Glynn
(2016) to compute average reward performance potential. This
fundamental matrix may provide new computation approaches
for average reward performance potential; however, it seems to
be difficult to find the corresponding sample path functional for
EGVR.

https://doi.org/10.1016/j.automatica.2018.03.011
0005-1098/© 2018 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.automatica.2018.03.011
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2018.03.011&domain=pdf
mailto:autolyj@hit.edu.cn
mailto:xy.wu@siat.ac.cn
mailto:louyj@hit.edu.cn
mailto:hychen5@hit.edu.cn
mailto:jiangang_lee@hit.edu.cn
https://doi.org/10.1016/j.automatica.2018.03.011


Y. Li et al. / Automatica 93 (2018) 172–182 173

The perturbation realization factor (PRF) proposed in Cao
(2007) and Cao and Chen (1997) provides a relative value of perfor-
mance potentials and can be used to estimate performance poten-
tial based on a single sample path (Cao, 2007) and to optimize the
performance of queueing systems (Xia & Cao, 2012). In this study,
we apply PRF to implement EGVR for average reward performance
potential. Coupling methods have been widely used in statistics
(Griffeath, 1975; Lindvall, 1992) and simulations.We do not intend
to provide a comprehensive survey of coupling methods, and in-
stead, we limit our review to studies that are most relevant to our
problem. As a coupling method, common random number (CRN)
(Glynn, 1985; Pflug, 1996) has been widely used in simulations
to reduce variance in the estimation of the mean difference of
two different random variables. In Cao (2007), the application of
coupling methods in average reward performance potential was
presented from the perspective of numerical solutions. This study
found that coupling methods cannot improve the convergence
rate of the numerical algorithms. Four coupling methods were
presented in perturbation analysis to estimate the performance
derivative in Dai (2000). Thiswork pointed out that finding a better
coupling scheme is desirable. The maximal coupling in Griffeath
(1975) is maximal in the sense that merging is attained as effi-
ciently as possible but leads to non-Markov coupling, and thus,
the linear equation required by EGVR cannot be obtained. The
basic idea regarding the use of coupling to estimate performance
potential was briefly introduced in Li (2012) but details were not
provided.

In this study, we present novel approaches for the EGVR of
average reward performance potential based on the sample paths
of Markov chains, which avoid the estimations of additional vari-
ables, such as average reward and steady state probability dis-
tribution, and thus implement EGVR in the true sense. On the
basis of estimation algorithms, we introduce the correlation of the
simulations of Markov chains by using coupling methods. Vari-
ous coupling methods can be used to further reduce estimation
variance or simulation time. Although certain coupling methods
require information of transition probabilities, these methods can
be applied to states where transition probabilities are known, to
introduce the correlation of simulations or to combine them with
physical simulations. In particular, we propose two optimal cou-
pling methods that can minimize simulation time and estimation
variance, respectively. To our knowledge, the simulation ofMarkov
chains is frequently time-consuming and costly. The reduction
in simulation time may significantly reduce estimation time. The
coupling-based estimation methods used in this study can reduce
estimation variance and simulation time and improve simulation
efficiency.

2. Performance potential and its estimations

Consider an ergodic (irreducible, aperiodic, and positive recur-
rent) Markov chain X = {Xl, l = 0, 1, . . .} on a finite state
space S = {1, 2, . . . ,M} with a transition probability matrix
P = [p(i, j)]Mi,j=1. Let π = (π (1), π (2), . . . , π (M)) be a row vector
that represents its steady state probability. Then, we derive the
following balance equations:

πP = π, πeM = 1, (1)

where eM = (1, 1, . . . , 1)T is an M-dimensional column vector
whose components are all equal to 1, and superscript ‘‘T ’’ denotes
the transpose. Let f : S → R be a reward function and occa-
sionally a (column) reward vector, i.e., f = (f (1), f (2), . . . , f (M))T .
We consider the long-run average reward (or simply the av-
erage reward) as a performance measure, which is defined

as

η = lim
L→∞

1
L
E
{ L−1∑

l=0

f (Xl)
}

=

M∑
i=1

π (i)f (i) = π f .

For the aforementioned Markov chain, the following Poisson
equation holds (Bertsekas, 1995; Cao, 2007; Puterman, 1994):

(IM − P)g + ηeM = f , (2)

where IM denotes an M × M identity matrix. Its solution g =

(g(1), g(2), . . . , g(M))T is called average reward performance po-
tential (Cao, 2007) (it is equivalent to the ‘‘relative cost function’’
(Bertsekas, 1995), ‘‘bias’’ (Puterman, 1994) or ‘‘value function’’
(Munos, 2006)). The solution to (2) can be obtained only up to an
additive constant, i.e., if g is a solution to (2), then so is g + ceM ,
where c is a constant. It can be proven that

g(i) = E

{
∞∑
l=0

[f (Xl) − η]

⏐⏐⏐X0 = i

}
, i ∈ S (3)

is a specific average-reward performance potential since

g(i) = E

{
∞∑
l=0

[f (Xl) − η]

⏐⏐⏐X0 = i

}

= f (i) − η +

∑
j∈S

p(i, j)E

{
∞∑
l=1

[f (Xl) − η]

⏐⏐⏐X1 = j

}
= f (i) − η +

∑
j∈S

p(i, j)g(j),

whosematrix form is the same as Eq. (2). To clearly describe EGVR,
we also introduce the discounted reward performance potential,
which is defined as follows:

gα(i) = E

{
∞∑
l=0

αlf (Xl)
⏐⏐⏐X0 = i

}
, (4)

where 0 < α < 1 denotes a discount factor. Similarly, the
discounted reward performance potential satisfies the following
Poisson equation (Puterman, 1994):

(IM − αP)gα = f , (5)

where gα = (gα(1), gα(2), . . . , gα(M))T .
When the transition probabilities in P are known, performance

potential g may be obtained by solving linear equation (2) or using
its value iteration. However, certain transition probabilities in P
may be generally unknown. In such case, the linear equation or
its value iteration methods will not works. Estimation approaches
can be applied for such cases. Monte Carlo algorithms are gen-
erally used to estimate performance potential and implement
simulation-based optimization (Cooper et al., 2003; Marbach &
Tsitsiklis, 2001). Assume that N samples of performance potential
are obtained via simulation. Then, we have N estimates ĝn(i), n =

1, 2, . . . ,N of performance potential g(i), i ∈ S. The final esti-
mate is obtained by

∑N
n=1ĝ

n(i)/N . The variance of this estimate
is 1

N2

∑N
n=1varĝ

n(i), which is reduced with order 1/N . Compared
with Monte Carlo algorithms, the EGVR has a geometric variance
reduction rate. The related results about EGVR (Munos, 2006) are
reviewed in the succeeding paragraphs.

Consider a function vector g = (g(1), . . . , g(M))T , where g(i) =

E[Ψi(f )] and Ψi(f ) is a linear sample path functional of reward
function f that depends on the sample path of a Markov chain
with initial state i. For example, discounted reward performance
potential (4) can be described as gα(i) = E[Ψi(f )] and

Ψi(f ) =

∞∑
l=0

αlf (Xl),



https://isiarticles.com/article/112719

