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a  b  s  t  r  a  c  t

Fresnel  diffraction  of one-dimensional  curved  fractal  grating  is studied,  and  the  reduced,
identified  and  magnified  Talbot  images  of  fractal  grating  are  obtained  by the  proposed
optical  system.  Two  kinds  of  fractal  gratings  formed  by adding  and  multiplying  periodic
gratings  are  chosen  as  examples.  The  analytic  expressions  of  the  Fresnel  diffraction  for
one-dimensional  fractal  gratings  are  deduced,  and  the  size-controllable  self-images  are
predicted to  appear  at the  modified  Talbot  distance.  The  longitudinal  and  transverse  diffrac-
tion intensity  distributions  of  the  curved  fractal  gratings  are  simulated.  The  uniformity  of
the longitudinal  diffraction  carpets  can  be controlled  by changing  the  system  parameters,
and  the  transverse  diffraction  distributions  take  on  the  compressed,  exact,  and magni-
fied  images  of fractal  grating.  These  size-controllable  Talbot  imaging  of  fractal  grating  may
extend  the  applications  of  fractal  grating  because  of the  additional  flexibility.

© 2017  Published  by  Elsevier  GmbH.

1. Introduction

Self-imaging of grating is an important optical phenomenon of periodic object in Fresnel diffraction. Since it was advanced
by Talbot W H F [1], this phenomenon has been developed [2,3] and the studies about the self-imaging of the periodic
and quasi-periodic structures have been paid much attentions [4–6]. Importantly, the self-imaging phenomenon has also
been widely used in many fields such as array illumination [7], pulse shaping [8] and optical lithography [9]. However,
the significance of Talbot effect is not only for some optical phenomena, but also for the expanding regulations in wide
science field, such as X-ray [10], quantum physics [11], and nonlinear effects [12]. Also, Talbot effect is extended into a more
complex geometry, such as fractal objects. Fractals, such as Cantor sets and Koch curves, have the unique self-similarity and
scale-invariant property [13]. With these distinctive characteristics, the fractal grating which combines grating with fractal
structure has shown unique advantages in resonator transmission [14] and optical filtering [15]. Therefore, the self-imaging
effect of fractal grating arouses the interest of researchers [16–19].

In previous researches, including our studies about Talbot effect of periodic grating [20–22], quasi-periodic grating [6],
and fractal grating [18,19], the grating is straight and the presented Talbot carpet is homogeneous. Thus, only the identified
(integral) and reduced (fractional) images of grating are obtained. In fact, the curvature of grating and the divergence of light
source may  cause the image of grating to magnify [23,24]. Recently, our study about the diffraction of curved grating shows
that the magnified image of periodic grating can be formed in Fresnel diffraction region [23]. In this paper, we concentrate
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Fig. 1. Elementary gratings (a,b,d,e), the first kind of fractal grating (c) and the second kind of fractal grating (f), and curved fractal gratings (g,h).

our study on Fresnel diffraction of the curved fractal grating, and aim to obtain the size-controllable self-image of fractal
grating. The organization of the content is as follow. Section 2 gives the description of two  kinds of the curved fractal
gratings. Section 3 presents the theoretical analysis about the diffractions of the curved fractal gratings and predicts the
Talbot images of fractal gratings with different size appear at the modified Talbot distances. Section 4 shows the simulations
for the diffractions of the curved fractal gratings and the unequal images of fractal gratings verify the artificial manipulation
of Talbot imaging of grating. In the end, the conclusions of this paper are provided.

2. Curved fractal gratings

Here, the fractal grating contains two cases, and we  name them as the first and second kind of fractal gratings, respectively,
like in our previous researches [19]. The first kind of fractal grating is formed by multiplying elementary periodic gratings and
the second kind of fractal grating is generated by adding elementary periodic gratings. As we  know, the transmission function
of the periodic grating can be expressed in the Fourier series [25]. The elementary gratings for the first kind of fractal grating
can be expressed by ˙mAmexp(i2�mx0/di) with Am representing Fourier coefficient and di denoting the period of grating.
Similarly, the elementary gratings for the second kind of fractal grating can be expressed by ˙mAmexp(i2�m(x0-ai)/d), where
d is the period of grating and ai is the spatial dislocation.

Fig. 1 shows two fractal grating samples to illuminate the formation process of the curved fractal grating. Fig. 1(a) and (b)
are two elementary gratings for the first kind of fractal grating. The opening ratios of two gratings are 1/2 and the period of
one grating is three times of the other one. Fig. 1(c) is the first kind of fractal grating by multiplying the gratings in Fig. 1(a)
and (b). This fractal grating is 1-level fractal and its dimension is D = 0.6309. Similarly, Fig. 1(d) and (e) show two elementary
gratings for the second kind of fractal grating. The periods of two gratings are the same and their opening ratio 1/3 and 1/6,
respectively. The spatial dislocation between two  gratings is half of period. Fig. 1(f) is the second kind of fractal grating by
adding the gratings in Fig. 1(d) and (e). This fractal grating is also 1-level fractal and its dimension is D = 1. Next, bending the
fractal gratings along a cylindrical surface, we can obtain the curved fractal gratings, as shown in Fig. 1(g) and (h).

The transmission functions of the two kinds of one-dimensional fractal gratings, as shown in Fig. 1(c) and (f), can be
expressed by,
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