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A B S T R A C T

Multiparametric magnetic resonance imaging (mpMRI) has been established as the state-of-the-art examination
for the detection and localization of prostate cancer lesions. Prostate Imaging-Reporting and Data System (PI-
RADS) has been established as a scheme to standardize the reporting of mpMRI findings. Although lesion
delineation and PI-RADS ratings could be performed manually, human delineation and ratings are subjective and
time-consuming. In this article, we developed and validated a self-tuned graph-based model for PI-RADS rating
prediction. 34 features were obtained at the pixel level from T2-weighted (T2W), apparent diffusion coefficient
(ADC) and dynamic contrast enhanced (DCE) images, from which PI-RADS scores were predicted. Two major
innovations were involved in this self-tuned graph-based model. First, graph-based approaches are sensitive to the
choice of the edge weight. The proposed model tuned the edge weights automatically based on the structure of the
data, thereby obviating empirical edge weight selection. Second, the feature weights were tuned automatically to
give heavier weights to features important for PI-RADS rating estimation. The proposed framework was evaluated
for its lesion localization performance in mpMRI datasets of 12 patients. In the evaluation, the PI-RADS score
distribution map generated by the algorithm and from the observers' ratings were binarized by thresholds of 3 and
4. The sensitivity, specificity and accuracy obtained in these two threshold settings ranged from 65 to 77%, 86 to
93% and 85 to 88% respectively, which are comparable to results obtained in previous studies in which non-
clinical T2 maps were available. The proposed algorithm took 10s to estimate the PI-RADS score distribution
in an axial image. The efficiency achievable suggests that this technique can be developed into a prostate MR
analysis system suitable for clinical use after a thorough validation involving more patients.

1. Introduction

Prostate cancer is the most common non-skin cancer in the United
States with an estimated of 220,800 new cases in 2015 [1]. In Hong
Kong, prostate cancer was the third most common cancer in men and
accounted for 11.3% of all new cancer cases [2]. Fortunately, more than
90% of all prostate cancers are diagnosed at the localized stage and
five-year survival rate is almost 100% for men diagnosed with localized
cancer [3]. Hence, it is important for men with elevated risk to be

periodically screened. The first-line screening tests include Digital Rectal
Examination (DRE) and serum Prostate Specific Antigen (PSA) tests. If
the DRE or PSA result is suspicious for cancer,
transrectal-ultrasound-guided (TRUS-guided) biopsy is performed. Since
prostate cancer lesions are difficult to be seen in ultrasound,
TRUS-guided biopsy is not a procedure that targets suspicious lesions but
a systematic technique that samples prostate regions in which tumours
occur most frequently [4]. As a result, TRUS-guided biopsy missed 20�
35% of detectable lesion in the first biopsy [5–8]. To increase the cancer
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detection yield, repeated biopsies are required, leading to increased
anxiety pain and morbidity for patients. Thus, sensitive image-based
tools allowing for precise lesion localization are required in the devel-
opment of targeted sampling strategies.

The widespread use of PSA screening since the early 90's has led to a
higher detection rate of localized and less aggressive tumours [9]. The
development of focal therapies, such as cryotherapy and high-intensity
focused ultrasound, has provided options for localized tumours to be
treated with a lower risk of morbidity. Delineation of tumours is required
for the administration of these therapies in order to minimize damage to
the surrounding healthy tissues and organs. In addition to tumour
localization, risk assessment is also important to identify suitable can-
didates for focal therapies.

Multiparametric MRI (mpMRI) combines anatomic and functional
imaging techniques and has been shown to have high sensitivity and
specificity in cancer localization [10–12]. Consensus guidelines have
been established for the use of mpMRI [13], which recommended the
combination of T2-weighted (T2W) images with at least two functional
MRI techniques, typically the dynamic contrast enhanced (DCE) and
diffusion-weighted (DW) MRI. T2W MR imaging is the most widely used
MR sequence for anatomy visualization. It has high tissue contrast and
spatial resolution for visualization of zonal anatomy and tumours, which
typically appears as homogeneous low-intensity regions in the peripheral
and transition zones [13][Fig. 1 (a)]. However, the specificity of T2W
imaging is limited since benign abnormalities, such as post-biopsy
hemorrhage and prostatitis, may mimic cancer in T2W images [14].
DW imaging measures the Brownian motion of water molecules and can
help localize cancer as the mean water path length is shortened by cell
membranes of malignant lesions. The apparent diffusion coefficients
(ADC) characterizing the amount of diffusion are calculated from mul-
tiple DW images, and are typically displayed as a parametric map with
lesions appearing hypointense due to reduced water diffusion [Fig. 1(b)]
[10,15,16]. The addition of DW imaging to T2W imaging significantly
improves the sensitivity and specificity of cancer detection [13,15].
Prostate cancer tissue can also be characterized by DCE-MRI as the
increased vascularity of cancer leads to early hyper-enhancement and
rapid washout of the gadolinium contrast agent (Fig. 2) [17,18]. High
temporal resolution DCE-MRI is typically performed to characterize the
rate of uptake and washout of the contrast agent. When used alone,
DCE-MRI does not have a high sensitivity in cancer detection [11].
However, the sensitivity of T2W imaging is shown to increase signifi-
cantly when combined with DCE-MRI [11,19].

Although prior studies have been performed to investigate the use of
mpMRI for prostate lesion detection and localization [10,11,15,19–24],
most studies involved visual identification of lesions from 6 to 30 coarse
regions in the prostate instead of pixel-accurate lesion delineation. The

need for manual identification in these studies was time-consuming and
added observer variability to the result. Since these studies defined
prostate regions differently, there is a large variation in the results ob-
tained across studies; for example, the sensitivity and specificity in lesion
detection from T2W images ranged from 54 to 91% and 27–91%
respectively [10,11,25]. Turkbey et al. [11] divided the prostate into 30
regions and compared two ways of quantifying sensitivity and specificity.
In the first approach, known as the stringent approach, a lesion was
deemed to be undetected if it is not detected in the exact region where the
lesion was detected in the histological examination, even if it was
detected in one of the neighbouring regions in mpMRI. In the second
approach, known as the neighbouring approach, a lesion is deemed to be
detected if it is detected in a neighbouring region. The sensitivity and
specificity for lesion localization obtained in the neighbouring approach
were much higher than in the stringent approach (sensitivity: 42% vs.
73%, specificity: 83% vs. 89% in T2W), suggesting that localization ac-
curacy is sensitive to the detection criterion and the region size. To
address these issues, pixel-wise binary cancer classification algorithms
using mpMRI have been proposed [26–31], but these algorithms were
not evaluated on mpMR images acquired according to the clinical
consensus guidelines [13,32]. In particular, pixel-by-pixel T2 maps were
available as inputs to the algorithms proposed in Refs. [26–31]. Although
quantitative T2 maps are superior to T2W imaging in that it is not
affected by variabilities in TR and the bias field inhomogeneity due to the
use of endorectal coils, repeated T2W acquisitions are required at tens of
echo times, thereby substantially lengthening the acquisition time.
Considering that the acquisition protocol specified in the consensus
guidelines already take 30–45min, the further lengthening of the
acquisition time cannot be afforded in clinical practice. Furthermore,
although binary classifiers discussed above can provide information on
the location and size of cancer foci, the knowledge of how likely these
foci are clinically significant will further optimize diagnosis and treat-
ment planning. It has been demonstrated that ADC is correlated with
tumour aggressiveness [20], but this information could not be conveyed
by the results generated by binary classifiers described above. The study
reported in Ref. [31] is a notable study that estimated the pixel-based
malignancy probability using a logistic regression model. Although the
model provided a pixel-based malignancy probability in the continuous
range from 0 to 1, it was trained using binary classified data [i.e., ma-
lignant and benign regions of interest (ROIs)] and the intermediate
probabilities were obtained by mathematically model fitting. Without
concrete examples of lesions associated with intermediate cancer risk to
establish the clinical meaning of the fitted malignancy probabilities and
to train the model, it is unclear how the likelihood generated by the
model should be interpreted clinically. In addition, it is not possible to
validate the malignancy likelihood against expert observations without

Fig. 1. Outlines of prostate lesions by two radiologists on T2W, ADC and DCE images. Each row shows the contour drawn by a radiologist. 7 DCE images were
acquired sequentially (Fig. 2) and the one with the maximum enhancement is shown. The radiologists assigned a PI-RADS score to each lesion shown in the three
sequences. The score is shown at the bottom of each image.
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