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a b s t r a c t 

The transport and fluid flow in heterogeneous materials such as rocks, ceramics and concrete with a dis- 

tributed random microcrack network is strongly influenced by the density and the topology (distribution 

and connectivity) of microcracks. The overall fluid flow characteristics of such microcracked solids can 

be quantified in terms of an effective permeability. In the paper, a semi-analytical formulation for the 

effective permeability is proposed within the framework of the mean-field homogenization method us- 

ing the cascade continuum micromechanics model considering long range and short range interactions. 

We compare model predictions of the percolation threshold i.e. critical volume fraction of microcracks 

beyond which a solid with distributed microcracks becomes permeable, using results from numerical 

simulations. The model reveals a new perspective into the self-similar characteristics of the microcrack 

morphology near the threshold volume fraction of microcracks at which the microcrack structure changes 

from multiple disconnected microcracks to a connected self-similar microcracked structure. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Heterogeneous geological materials such as rocks and engi- 

neered porous materials such as ceramics, cementitious materials, 

masonry and concrete are characterized by a heterogeneous mi- 

crostructure, which generally includes, besides aggregates and the 

pore space, also distributed microcracks. These microcracks have 

different origins and are resulting from geological metamorpohis 

processes, shrinkage or mechanical, hygral and thermal loading 

processes (see Fig. 1 ). Distributed cracks, further denoted as micro- 

cracks in the paper, strongly modify the fluid flow characteristics 

through the porous material by enhancing the connectivity of the 

pore-structure and providing additional fluid flow pathways. Once 

the permeability of the porous matrix is known, the influence of 

the microcracked microstructure (see Fig. 2 ) on the fluid flow can 

be characterized by an effective permeability k eff. 

Fluid flow in quasi-brittle porous materials is generally de- 

scribed by the Darcy law ( Darcy, 1856 ). According to this law, the 

influence of the porous microstructure on the fluid flow is charac- 

terized by the permeability k [ m 

2 ], which, in an average sense at 

a macroscopic scale, represents the influence of the constituents 
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at lower spatial scales on the transport properties of the material. 

This paper focusses on the role of networks of distributed random 

microcracks in materials that are either impermeable or porous 

and its influence on the effective permeability. The permeability of 

the intact porous material itself is assumed to be known a priori . 

Modeling the effective properties of heterogeneous materials is 

a classical problem of physics and engineering. Idealizing the het- 

erogeneous microstructure in terms of multiple phases, the sim- 

plest approach is the Voigt ( Voigt, 1889 ) average of the perme- 

ability of the intact porous material and the intrinsic permeability 

of the microcrack, that implies a parallel arrangement of the in- 

dividual phases. This model is strictly applicable only to systems, 

where the microcracks are all connected to each other, parallel 

and infinitely long. However, for an isotropic distribution of finite 

sized microcracks generally encountered in cementitious, ceram- 

ics and geological materials, the microcrack network and distribu- 

tion introduce an additional ’structural’ effect called the percola- 

tion threshold ( Broadbent and Hammersley, 1957 ). The percolation 

threshold is the critical microcrack density (or the volume fraction 

of the microcracks), below which the number of microcracks to 

form a connected microcrack network is insufficient. This effect on 

fluid flow, from logical reasoning, is clearly proportional to the ra- 

tio (material contrast) of the intrinsic properties of the microcrack 

and the intact material. The Voigt model does not consider this 

effect. 
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Fig. 1. SEM images of microcracks on the surface of a concrete sample at a temperature loading of 200 o C (top left), microcracks in ultrabasic rocks subject to compressive 

stresses (top right), microcracks in ceramics as a result of fast cooling (bottom) (reprinted from ( Wang et al., 2005; Rigopoulos et al., 2011; Gilabert et al., 2014 ) with 

permission from Elsevier). 

Fig. 2. Illustration of a heterogeneous structure of rocks (left) and a corresponding 

microcracked REV �REV with a fully saturated microcrack network. 

Hence, the problem of estimating the effective properties re- 

quires an appropriate averaging of the intrinsic properties of the 

matrix material and the microcracks, simultaneously taking into 

consideration the percolation characteristics associated with the 

specific topology of the microcrack network. To this end, a wide 

variety of methods, such as the mean-field homogenization meth- 

ods, percolation theory and renormalization methods have been 

proposed. These methods are summarized briefly below. 

The mean-field homogenization method, also denoted as con- 

tinuum micromechnics ( Hashin, 1983; Nemat-Nasser and Hori, 

1999; Zaoui, 2002 ), is a blanket term for a family of schemes that 

estimate the effective properties of multiphase materials by char- 

acterizing the mean field perturbation due to a particular het- 

erogeneity using localization tensors ( Hill, 1963; 1965 ) in con- 

junction with appropriate definitions of the far-field boundary- 

conditions to consider the interactions of multiple heterogeneities. 

The method finds applications in a wide range of multiphase me- 

dia such as, cementitious materials ( Lemarchand et al., 2003; Pich- 

ler et al., 2008 ), foams ( Pichler and Lackner, 2013 ) and rocks 

( Saenger and Shapiro, 2002; Berryman and Hoversten, 2013; Zhu 

et al., 2016 ). Among the various schemes within this framework, 

the self-consistent scheme, which assumes that the matrix phase is 

that of the homogenized effective material is able to predict a per- 

colation threshold. This idea goes back to the work of ( Bruggeman, 

1935; Landauer, 1952 ), finding applications in the elasticity ( Hill, 

1965; Sanahuja et al., 2007 ) and transport properties of media 

with pore-networks ( Kirkpatrick, 1971; 1973; Koplik, 1981; David 

et al., 1990 ). Recently, the continuum version of this model was 

applied to fluid transport in isotropic and anisotropically microc- 

racked materials ( Fokker, 2001; Dormieux et al., 2006; Barthélémy, 

2009; Pouya and Vu, 2012; Berryman and Hoversten, 2013 ). Under 

extreme conditions, when the contrast of the intrinsic properties 

of the material phases is infinite or zero (e.g. in case of microc- 

racks in an impermeable intact material), the model predicts solu- 

tions with negative effective properties for a certain range of mi- 

crocrack volume fractions. The recursive cascade micromechanics 

model ( Timothy and Meschke, 2016b ) originally proposed for es- 

timating the effective diffusivity of porous materials satisfies the 

self-consistent equation and whose solutions are strictly positive. 

An extension of this model for the case of microcracked materials 

is used to estimate the effective permeability in this paper. 

For materials with a periodic microstructure ( Auriault et al., 

2009 ), the double porosity approach is often used within the 

framework of formal asymptotic expansion to derive an effective 

homogenized permeability ( Lewandowska et al., 2004 ). 

While homogenization methods look at the problem of estimat- 

ing the effective properties from the point of view of averaging, 

the percolation theory, as the name suggests, uses the percolation 

threshold as the starting point for estimating the effective proper- 

ties using certain scaling laws ( Efros and Shklovskii, 1976 ). These 

models study the connectedness of the phases as a function of the 

phase geometry and phase density or volume fraction using sta- 
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