
Contents lists available at ScienceDirect

Informatics in Medicine Unlocked

journal homepage: www.elsevier.com/locate/imu

Detection of small changes in medical and random-dot images comparing
self-organizing map performance to human detection

John Mwangi Wandetoa,b,⁎, Henry Nyongesab, Yves Rémonda, Birgitta Dresp-Langleya

a ICube UMR 7357 CNRS, University of Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg Cedex, France
b Dedan Kimathi University of Technology, Nyeri-Mweiga Road, P.O. Box 657-10100, Nyeri, Kenya

A R T I C L E I N F O

Keywords:
Medical images
Random-dot images
Change detection
SOM analysis
Quantization error
Human performance

A B S T R A C T

Radiologists use time-series of medical images to monitor the progression of a patient's conditions. They
compare information gleaned from sequences of images to gain insight on progression or remission of the
lesions, thus evaluating the progress of a patient's condition or response to therapy. Visual methods of
determining differences between one series of images to another can be subjective or fail to detect very small
differences. We propose the use of quantization errors obtained from self-organizing maps (SOM) for image
content analysis. We tested this technique with MRI images to which we progressively added synthetic lesions.
We have used a global approach that considers changes on the entire image as opposed to changes in segmented
lesion regions only. We claim that this approach does not suffer from the limitations imposed by segmentation,
which may compromise the results. Results show quantization errors increased with the increase in lesions on
the images. The results are also consistent with previous studies using alternative approaches. We then
compared the detectability ability of our method to that of human novice observers having to detect very small
local differences in random-dot images. The quantization errors of the SOM outputs compared with correct
positive rates, after subtraction of false positive rates (“guess rates”), increased noticeably and consistently with
small increases in local dot size that were not detectable by humans. We conclude that our method detects very
small changes in complex images and suggest that it could be implemented to assist human operators in image-
based decision making.

1. Introduction

Radiologists have to detect the progression of patients’ conditions
on the basis of, often hardly detectable, local changes in medical
images. The images are captured through various imaging techniques,
such as magnetic resonance imaging (MRI), computerized tomography
(CT) and positron emission tomography (PET). These images provide
the radiologist with visual information about the state or progression of
a given condition, and help determine the course of treatment.
Traditional methods for handling such images involve direct visual
inspection, which is by its nature subjective. Image science has
proposed methods for the automated processing of medical images,
which involves various different image processing techniques to
identify specific diagnostic regions of interest and features, such as
lesions. [1,2] proposed a computational framework to enable compar-
ison of MRI volumes based on gray-scale normalization to determine
quantitative tumor growth between successive time intervals. They
proposed three tumor growth indices, namely, volume, maximum
radius and spherical radius. The approach, however, requires an initial

manual segmentation of images, which can be a time-consuming task.
[3], first, semi-automatically segmented a tumor in an initial patient
scan and then aligned the successive scans using a hierarchical
registration scheme to measure growth or shrinkage from the images.
This method relies on accurate segmentation and requires manual
supervision, in order to detect changes of up to a few voxels in the
pathology. [4] describe a procedure aimed for difficult-to-detect brain
tumor changes. The approach combines input from a medical expert
with a computational technique. In this paper, we propose a new
technique based on self-organized mapping that considers the whole
medical image, as opposed to an image segment, as region of interest.
This excludes manual benchmarking tasks designed to eliminate
inclusion of structures with similarity to tumor pathology. The basic
principle behind direct image analysis is that there exists an intrinsic
relationship between medical images and their clinical measurements,
which can be exploited to eliminate intermediate procedures in image
analysis. Compared to traditional methods, direct methods have more
clinical significance by targeting the final outcome. Thus, direct
methods not only reduce high computational costs, but also avoid
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errors induced by any intermediate operations. Direct methods also
serve as a bridge between emerging machine learning algorithms and
clinical image measurements. Finally, to show how the output variable
called “quantization error” of image analysis by SOM may be exploited
as an indicator for the presence of potentially critical local changes in
image contents, we compared the quantization errors of SOM outputs
from analyses of random-dot images with very small progressive
increases in the local size of a single dot to the capacity of human
observers to detect these changes.

2. Materials and methods

2.1. Self-organizing maps

A self-organizing map (SOM) is an unsupervised neural network
learning technique that does not need target outputs required in error
correction supervised learning. SOM, [5] are used to produce a lower-
dimension representation of the input space. Thus, for each input
vector, so called, competitive learning is carried out to produce a lower-
dimension visualization of the input data. SOM are typically applied as
feature classifiers of input data. From an initial randomization of a
map, input data is iteratively applied to optimize the map into stable
regions. Where the node weights match the input vector, that area of
the lattice is selectively optimized to more closely resemble the data for
the class the input vector is a member of. From an initial distribution of
random weights and over multiple iterations the SOM eventually
settles into a map of stable zones. Each region of the map becomes a
feature class of the input space. Each zone is effectively a feature
classifier, and the graphical output is a type of feature map of the input
space.

The central idea behind the principles and mathematics of SOM is
that every input data item shall be matched to the closest fitting region
of the map, called the winner (as denoted by Mc in Fig. 1), and such
subsets of regions shall be modified for optimal matching of the entire
data set, [6]. On the other hand, since the spatial neighborhood around
the winner in the map is modified at a time, a degree of local and
differential ordering of the map occurs to provide a smoothing action.
The local ordering actions will gradually be propagated over the entire
SOM. The parameters of the SOM models are variable and are adjusted
by learning algorithms such that the maps finally approximate or
represent the similarity of the input data. While studies have mainly
concentrated on the performance of various SOM on a given dataset,
we set to unveil the behavior of various datasets on a single SOM. Given
related sets of medical image series and a constant SOM, can we detect
a significant trend in the images? Is the trend of any clinical
significance?

2.2. The quantization error in SOM outputs

The task of finding a suitable subset that describes and represents a
larger set of data vectors is called vector quantization (VQ), [7]. VQ

aims at reducing the number of sample vectors or at substituting them
with representative centroids. The resulting centroids do not necessa-
rily have to be from the set of samples but can also be an approximation
of the vectors assigned to them, for example their average. VQ is closely
related to clustering, and SOM performs VQ since the sample vectors
are mapped to a (smaller) number of prototype vectors, [8]. The
prototype vectors are called the best matching units (BMU) in SOM. As
a property of SOM, the quantization error (QE) is used to evaluate the
quality of SOM. The QE belongs to a type of measures that have been
used to benchmark a series of SOMs trained from the same dataset. In
our work, we have used QE to do a somewhat opposite measure: to
benchmark a series of datasets using SOM trained with the same
parameters. In other words, we use the same SOM, same map size,
feature size, learning rate and neighborhood radius to analyze series of
image datasets with clinical significance, or random-dot images, as
shown later herein. The QE is derived after subjecting an image to a
self-organizing map algorithm analysis and by calculating the squared
distance (usually, the standard Euclidean distance) between an input
data, x, and its corresponding centroid, the so-called “best matching
unit”, or BMU. This gives the average distance between each data
vector (X) and its BMU and thus measures map resolution:

∑QE N X= 1/ − (BMU )
i

N
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=1
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where N is the number of sample vectors x in the image.
This measure completely disregards map topology and alignment,

as noted by [8], making it applicable for different kinds and shapes of
SOM maps. Besides, the calculation does not rely on any user
parameters as seen in (1) above. A 16 by 16 SOM with an initial
neighborhood radius of 5 and learning rate of 0.2 was set up for the
extraction of data from images. These initial values were arrived at
after testing several sizes of the SOM to check that the cluster
structures were shown with sufficient resolution and statistical accu-
racy, [6]. The learning process was started with vectors picked
randomly from the image array as the initial values of the model
vectors. For each of the following three experiments, the SOM
parameters were kept constant.

In this study, we started by applying SOM to time series of original
imaging data from a patient's knee before and after blunt force
traumatic injury. Then, we added artificial lesion growth to these
images and ran SOM analyses on the modified images. [4] modified
original images by adding synthetically evolving pathological content of
1%, 5% and 22% volume growth prior to further analyses. They did not
use SOM analysis but conducted visual and computational recognition
experiments with these images to test the detection of the artificial
"pathologies".

3. Results from SOM analyses

3.1. Original medical images

We used two sets of images from a patient with a sprained knee,
courtesy of Hopital de Hautepierre, Strasbourg, France. The same
acquisition parameters (machine, sequence, coil, etc) were used to
acquire each set which consisted of 20 MRI images. Table 1 shows the
QE values obtained from each set of images, taken on two consecutive
clinical visits, almost two months apart. Fig. 2 is a graphical display of
the data.

The QEs shown in Table 1 were submitted to one-way analysis of
variance (ANOVA). The difference between image series is statistically
significant (t (1, 38)=3336; p < .01).

3.2. Medical images with artificially added "lesion" contents

On the first set of images, we added a synthetic lesion to each image

Fig. 1. Schematic illustration of a self-organizing map. An input data item X is broadcast
to a set of models Mi, of which Mc matches best with X. All models that lie in the
neighborhood (larger circle) of Mc in the grid match better with X than with the rest,
from [6].
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