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a b s t r a c t

In this paper, we concern about the dynamics of a diffusive enzyme-catalyzed system aris-
ing fromglycolysis, describing a biochemical reaction inwhich a substrate is converted into
a product with positive feedback and into a branched sink. The temporal and spatiotem-
poral dynamics of the system under homogeneous Neumann boundary conditions, are
studied. Preliminary analysis on the local asymptotic stability and Hopf bifurcation of the
spatially homogeneousmodel based on ordinary differential equation is presented. For the
reaction–diffusion model, firstly the parameter regions for the stability or instability of the
unique constant steady state are discussed. Finally, bifurcations of spatially homogeneous
and nonhomogeneous periodic solutions as well as nonconstant steady state solutions are
studied. Numerical simulations are presented to verify and illustrate the theoretical results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Natural systems exhibit an amazing diversity of structures in both living and non-living mechanisms, and thereby,
in-depth understanding of spatial and temporal behavior of interacting species or reactants in ecological and chemical
dynamics has become a central issue. For this purpose, numerous coupled partial differential equations have been proposed
by biologists, chemists and applied mathematicians to model problems arising from various disciplines such as population
dynamics, genetics and chemical reactions [1].

In the early 1950s, the British mathematician Alan M. Turing [2] proposed a model that accounts for pattern formation
in morphogenesis. Turing showed mathematically that a system of coupled reaction–diffusion equations could give rise
to spatial concentration patterns of a fixed characteristic length from an arbitrary initial congratulation due to so called
diffusion-driven instability, that is, diffusion could destabilize an otherwise stable equilibrium of the reaction–diffusion sys-
tem and lead to nonuniform spatial patterns. Turing’s analysis stimulated considerable theoretical research onmathematical
models of pattern formation, and a great deal of research have been devoted to the study of Turing instability in chemical
and biology contexts, see for example, [3–9].

This paper is concernedwith a biochemical reaction–diffusion scheme comprising a substrate (S), a product (P), and three
enzymes (Ei, i = 1, 2, 3) in which a substrate is converted to a product with positive feedback and into a branched sink. The
reaction process of the model is given by [10–12]

ν0(input)
−−−−→ S

E3(sink)
−−−−→,

S
E1(conversion)
−−−−−−−→ P

(feedback)
−−−−−→ E1,

P
E2(sink)
−−−−→ .
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The corresponding system of ODEs is as follows:

ds
dt

= ν0 − VE1 − VE3 ,

dp
dt

= VE1 − VE2 in (0,∞),

where s and p are the concentrations of the substrate and product, respectively; ν0 (input) is a positive constant; and
the reaction rates VEi (i = 1, 2, 3) are functions of s and p, which will be determined concretely below. Many such
reactions are present in actual biochemical systems with the specific example dealt with in [13] being related to glycolysis
in yeast cells [14,11]. The term VE3 plays an essential role in obtaining the formation and disappearance of large periodic
solutions [11]. In our study, this interesting reaction rate is considered to be of the basic form VE3 = ν2s, for a positive
constant ν2, as described in [10,14], and a rescaled value of ν2 is considered to be the main parameter in the current study;
The rate VE1 is considered to be VE1 = ν1sp, for a positive rate constant ν1 (e.g. see [10,12]).

The most well-known feature of enzymatic reactions is that an enzyme can be saturated. With the saturation of an
enzyme, the rate of the reaction catalyzed by the enzyme reaches its maximum, and a further increase in the substrate
concentration does not increase the reaction rate. This feature was first observed by Michaelis and Menten. Thus, it is
reasonable that E2 in the third reaction follows the Michaelis–Menten kinetics, that is,

VE2 =
ν3p

p + ν4
,

for a positive rate constant ν3 and a positive Michaelis constant ν4 [10,12,13].
By substituting the above reaction rates VEi , (i = 1, 2, 3) into the ordinary differential equations (ODEs), we can

eventually obtain the autocatalytic differential system:

ds
dt

= ν0 − ν1sp − ν2s,

dp
dt

= ν1sp −
ν3p

p + ν4
in (0,∞).

In the above ODEs, when this effect is considered (e.g. in living cells), the concentrations involved in the reaction process are
spatially dependent, hence, the equations governing these concentrations become partial differential equations (PDEs):

∂s(t, x)
∂t

= ν0 − ν1s(t, x)p(t, x) − ν2s(t, x) + D1∆s(t, x),

∂p(t, x)
∂t

= ν1s(t, x)p(t, x) −
ν3p(t, x)

p(t, x) + ν4
+ D2∆p(t, x) in (0,∞) ×Ω,

where D1 and D2 are positive constants, and Ω ⊂ RN is a bounded domain with a smooth boundary ∂Ω . In this study, we
deal with PDEs under the homogeneous Neumann boundary conditions.

For simplicity, after introducing L as a typical length scale and defining the following new dimensionless quantities [12],

t̄ =
ν3

ν4
t, x̄ =

x
L
, u =

ν3

ν0ν4
s, v =

ν1ν4

ν3
p, δ =

ν2ν4

ν3
,

λ =
ν0ν1ν

2
4

ν23
, µ =

ν3

ν1ν
2
4
, d1 =

ν4

ν3

D1

L2
, d2 =

ν4

ν3

D2

L2
,

and then ignoring the upper bars and still denoting the rescaled spatial region byΩ , we can rewrite the specific system in
the following dimensionless form:

∂u
∂t

= 1 − uv − δu + d1∆u,

∂v

∂t
= λuv −

v

µv + 1
+ d2∆v in (0,∞) ×Ω. (1)

In this study, we deal with (1) under the homogeneous Neumann boundary conditions:

∂u
∂ν

=
∂v

∂ν
= 0 for x ∈ ∂Ω, t > 0, (2)

where ν is the outward normal toΩ at x ∈ ∂Ω . The homogeneity, corresponds to the ‘‘no flux condition’’, that is no individual
can leave or enter the domain via the boundaries.

An important concern is the existence of positive steady-state solutions and the asymptotic behavior of time-dependent
solutions. For previous background on stationary patterns and the existence and nonexistence of nonconstant positive
solutions of (1), we refer the readers to [12,15,1] and references therein.
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