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a b s t r a c t 

In this paper, we employ contraction theory to solve cluster synchronization problem under directed 

topology. According to the cluster structure, we develop an invariant subspace. Then we take the ad- 

vantage of the complementary space to prove that the whole systems will synchronize to this invariant 

subspace, leading to cluster synchronization. We first deal with the linear systems which are linearly 

coupled under the framework of directed topology. Some sufficient conditions are given to guarantee 

that the coupled linear systems can achieve cluster synchronization. Moreover, the case of linearly cou- 

pled non-linear systems is also considered. Two simulation examples are given to verify our theoretical 

findings. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Synchronization problem has a long history [1] , which has been 

discovered in many different fields, such as system biology, neural 

networks, sensor networks, formation control, and traffic manage- 

ment [2,3] . The studies on the complete consensus of networked 

multi-agent systems with the aim to reach an agreement have 

been widely conducted in recent years, see, e.g., [4–6] . However, 

in many cases the states of the coupled systems may not always 

synchronize to the same trajectory. A real-world complex network 

can be divided into some smaller subnetworks [7,8] . For exam- 

ple, for a flock of birds flying around in the sky, the same species 

of birds will achieve synchronized form, while different species 

of birds will not. So far, the cluster synchronization phenomenon 

has attracted the researchers from various disciplines of engineer- 

ing and science. This phenomenon can be observed when systems 

synchronize to several different groups, which in the following are 

termed clusters. Recently, increasing attention has been paid to 

cluster synchronization. 

There have been plenty papers working on cluster synchroniza- 

tion, such as [1,7–10] . In general, the network with cluster synchro- 

nization can give richer information than the network with just 
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(complete) consensus. The cluster synchronization implies that a 

coupled multi-agent system is split into several clusters and all the 

agents in the same cluster will synchronize to the same trajectory, 

while the agents in different cluster may or may not synchronize 

to different trajectories [9] . Note that in the real network, some 

agents may cooperate, while some may compete. Then, the net- 

works with both cooperate and antagonistic interactions can be de- 

noted by signed graphs. The weights of edges in the graph can be 

positive/negative which are decided by the relationship between 

the agents, e.g., trust/distrust [11] . In most cases, the agents in the 

same cluster are cooperative, while competitive in different clus- 

ters. Now, a natural question is to state under what conditions as- 

sociated with coupling strength and the topology of the network, 

the systems in each cluster will synchronize to the same trajec- 

tory. In [11] , the authors consider the cluster synchronization for 

identical linear and non-linear system via pinning control. Some 

sufficient conditions are proposed to enable the systems to real- 

ize cluster synchronization under fixed and switching topology, re- 

spectively. By working in the similar framework that each cluster 

has a spanning tree, cluster synchronization is investigated in [12] , 

where the authors consider nonidentical systems, Sufficient condi- 

tions are also provided to solve the cluster synchronization prob- 

lem of linear and nonlinear systems, respectively. In [7,13] , the au- 

thors investigate the cluster synchronization of hybrid coupled sys- 

tems with communication time delay. In [14] , chemically coupled 

and generally formulated networks cluster synchronization prob- 

lem is considered. In [10] , the authors drive a network to a se- 
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lected cluster synchronization pattern by means of pinning control 

strategy. The sufficient conditions are given to guarantee the clus- 

ter synchronization. 

Different from the Lyapunov method, which is commonly used 

in the above surveyed papers, a new method, contraction analysis, 

is proposed in [15–18] . In [15] , contraction analysis which is de- 

rived from differential geometry and continuum mechanics, is pro- 

posed. Contraction analysis is intended for convergence but does 

not need to know the nominal motion a prior . All the trajectories 

corresponding to different initial conditions converge to a common 

one. Other related properties of contraction analysis can be found 

in [18] . Latter, the above works are extended to a more general 

case in [19] , which investigates the concurrent synchronization for 

interacting cluster of linear and non-linear systems. Nevertheless, 

the authors do not consider the impact of couplings and work on 

an undirected network. 

In view of the above inspirations, in this paper we aim to study 

the cluster synchronization problem with heterogeneous systems 

under directed topology. We focus on the cluster synchronization 

problem and use the contraction theory to perform the synchro- 

nization analysis. We give a geometric explanation on the emer- 

gence of cluster synchronization. In this paper, we adopt the model 

which has carried out a modification to the existing synchroniza- 

tion model. 

The rest of the paper is organized as follows. In Section 2 , some 

preliminary knowledge on graph theory and contraction theory is 

introduced. In Section 3 , the sufficient conditions are given to guar- 

antee the cluster synchronization of linear systems and non-linear 

systems, respectively. In Section 4 , two illustrative examples are 

given to verify our results. Finally, the main results of this paper 

are summarized in Section 5 . 

Notation: Throughout this paper, let ‖ x ‖ stand for the Euclidean 

norm of a vector x . Let diag { �1 , . . . , �n } denote the block diagonal 

matrix, and the j th diagonal block is square matrix �j , j = 1 , . . . , n . 

A 

T denote the transpose of the real matrix A. Q is a symmetric ma- 

trix; λmin ( Q ) and λmax ( Q ) denote the smallest and largest eigenval- 

ues, respectively. Let I be the identity matrix of compatible dimen- 

sion; 1 be the all one column of compatible dimension; � stand 

for the Kronecker product. 

2. Preliminary 

In this section, we revisit some classical concepts of graph the- 

ory and introduce some preliminary knowledge about contraction 

theory. 

2.1. Graph theory 

The weighted digraph with order N is denoted by G = (V, ε, A ) , 

where V = { 1 , . . . , N} denote the finite non-empty node set; ε ∈ 

V × V denote the finite non-empty edge set; A = [ a i j ] ∈ R 

N×N is the 

weighted adjacency matrix. a ij � = 0 when there is a directed edge 

from node j to node i , otherwise a i j = 0 . Moreover, assume that 

a ii = 0 , i = 1 , . . . , N. Let L = [ l i j ] be the Laplacian matrix associated 

with G , with l i j = −a i j , i � = j , and l ii = 

∑ N 
k =1 ,k � = i a ik . 

A directed path is a sequence of edges in a directed graph of 

the form ( i 1 , i 2 ), ( i 2 , i 3 ), . . . , (i q −1 , i q ) . A directed graph is called 

strongly connected if for any different two agents i and j , there 

exists a directed path from i to j . A directed graph has a directed 

spanning tree if there exists at least one node, called the root node, 

having a directed path to all other nodes. 

Without loss of generality, in what follows, we shall assume 

that the nodes in the graph G can be split into q (1 ≤ q ≤ N ) clus- 

ters {V 1 , . . . , V q } such that V i ∩ V j = ∅ , ∪ 

q 
i =1 

V i = V . Let G i denote the 

graph of cluster V i . For any node i ∈ V, we use ī to denote which 

cluster the node i belongs to, i.e., ī = � if i ∈ V � . 

The Laplacian matrix L associated with G takes the following 

form: ⎡ 

⎣ 

L 11 · · · L 1 q 
. . . 

. . . 
. . . 

L q 1 · · · L qq 

⎤ 

⎦ 

where L ii ∈ R 

N i ×N i , i = 1 , . . . , q, 
∑ q 

i =1 
N i = N. 

Definition 1. For a directed graph G with Laplacian matrix is L , 

define 

a 1 (L ) = min 

x ∈ K 
x T Lx = min 

x � =0 ,x ⊥ 1 
x T Lx 

x T x 
, 

where K = { x ∈ R 

n , x ⊥ 1 , ‖ x ‖ = 1 } . 
In fact, a 1 can be written in another form 

a 1 (L ) = min 

x ∈ R n −1 , ‖ Qx ‖ =1 
x T Q 

T LQx = λmin 

(
1 

2 

Q 

T (L + L T ) Q 

)
, 

where the column vectors of Q ∈ R 

n ×(n −1) form an orthonormal 

basis of 1 ⊥ . 

2.2. Contraction Theory 

In this subsection, we will give some preliminary discussion on 

contraction theory. Consider a deterministic system in the form of 

˙ x (t) = f (x, t) , (1) 

where f : R 

n → R 

n is a nonlinear vector function and x ∈ R 

n is the 

state vector. 

The contraction theory has been vastly used in many existing 

literature [15–19] . In this paper, we will introduce some proper- 

ties of the contraction theory for stability analysis. The contraction 

theory, which can be found in [15] for details, can be restated as 

follows. 

Considering the system (1) , contraction analysis is motivated by 

the elementary remark that talking about stability does not require 

to known what the nominal motion is: intuitively, a system is sta- 

ble in some region if initial conditions or temporary disturbances 

are somehow “forgotten”. Then stability of the system can be ob- 

tained. 

Firstly, we show some properties of fluid flow. the Eq. (1) can 

be considered as an n -dimensional fluid flow, where ˙ x is the n - 

dimensional “velocity” vector at the n -dimensional position x and 

time t . Assuming that f ( x, t ) is smooth, then (1) yields the exact 

differential relation 

δ ˙ x = 

∂ f 

∂x 
(x, t) δx (2) 

where δx is a virtual displacement of the two trajectories with 

different initial state in the flow field ˙ x = f (x, t) . The squared 

distance between the two trajectories is defined as δx T δx . Then, 

we will consider the differential of squared distance of the two 

trajectories. 

d 

dt 
(δx T δx ) = 2 δx T δ ˙ x = 2 δx T 

∂ f 

∂x 
δx (3) 

Definition 2. A given system (1) is contracting, if the Jacobian ma- 

trix ∂ f 
∂x 

satisfies 

1 

2 

(
∂ f 

∂x 
+ 

∂ f T 

∂x 

)
< −βI, ∀ x, ∀ t ≥ 0 , 

where β is a positive constant. 

Using the transformation of coordinates, let δz = 	(x, t) δx, 

M(x, t) = 	T 	, we can get the following results. 
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